同步培优课程教师版

第第88讲讲含参方程(组)和不等式含参方程(组)和不等式模块一模块一含参方程(组)的题型含参方程(组)的题型1同解问题2整数解问题3错解问题模块二模块二含参方程(组)的基本解法含参方程(组)的基本解法11含参含参方程方程和和含参方程组含参方程组当方程的系数用字母表示时,这样的方程称为含字母系数的方程

同步培优课程教师版Tag内容描述:

1、第第 8 8 讲讲 含参方程(组)和不等式含参方程(组)和不等式 模块一模块一 含参方程(组)的题型含参方程(组)的题型 1同解问题 2整数解问题 3错解问题 模块二模块二 含参方程(组)的基本解法含参方程(组)的基本解法 1 1含参含参方程方程和和含参方程组含参方程组 当方程的系数用字母表示时,这样的方程称为含字母系数的方程,这些字母系数称为参数,因此也叫 做含参数的方程,简称含参方程由至少一。

2、第第 9 9 讲讲 含参不等式组含参不等式组 模块一模块一 含参不等式组含参不等式组 1 1不等式组解集口诀不等式组解集口诀 设ba 解集 在数轴上表示的示意图 口诀 xa xb xa 同大取大 xa xb xb 同小取小 xa xb bxa 大小小大中间找 xa xb 无解 大大小小无解了 2 2不等式组的常见题型不等式组的常见题型 (1)已知不等式组的解集情况,求参数的取值或取值范围。

3、 第第 7 7 讲讲 一一、不等式的概念不等式的概念 1 1不等式不等式:用不等号连接的式子,叫做不等式 【注】【注】不等号包括“” 、 “” 、 “” 、 “” 、 “” 【例】例】52 ,a ,x ,|x ,aa , 都是不等式 2 2不等式的不等式的性质:性质: (1)若ab,则acbc;若ab,则acbc 不等式两边都加上(或减去)同一个数(或式子) ,不等号方向不变 (2。

4、 第第 6 6 讲讲 一一、二元一次方程的概念二元一次方程的概念 1 1 二元一次方程: 二元一次方程: 含有两个未知数, 并且含未知数的项的最高次数是 1 的整式方程, 叫做二元一次方程 二 元一次方程的一般形式一般形式为:axbyc(,)ab 【例例】xy ,xy ,xy ,xy 等都是二元一次方程 2 2二元一次方程的判定:二元一次方程的判定: 必须同时满足四个条件: (1)含有两。

5、 第第 5 5 讲讲 模块一:平面直角坐标系的概念模块一:平面直角坐标系的概念 1 1有序数对:有序数对: 有顺序的两个数a与b组成的数对叫做有序数对,记作( , )a b 注意: 有序数对是有顺序的, 可以准确地表示出平面内一个点的位置,( , )a b和( , )b a表示的意义是不同的 2 2平面直角坐标系:平面直角坐标系: 两条互相垂直的共原点数轴组成水平的数轴叫做横轴(x轴) ,取向右为。

6、第第 4 4 讲讲 模块一:平方根和立方根模块一:平方根和立方根 1 1平方根平方根 平方根 解释 总结 定义 一般地,如果一个数x的平方等于a,即 2 xa,那 么这个数x叫做a的平方根(也叫做二次方根) 0 只有一个平方根,它是 0 本身 例如:9 的平方根为3,225 的平方根为15. (1)一个正数有两个互 为相反数的平方根; (2)0 的平方根为 0; (3)负数没有平方根 表示 一个非。

7、 第第 2 2 讲讲 一一、平行线平行线 1 1平行线平行线:在同一平面内,永不相交的两条直线称为平行线用“/”表示 2 2平行公理平行公理:经过直线外一点,有且只有一条直线与这条直线平行 【例】【例】如图 1,过直线a外一点A作b/a,c/a,则b与c重合 3 3平行公理推论平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行 简记为:平行于同一条直线的两条直线平行平行。

8、 第第 3 3 讲讲 平行线的性质和构造平行线的性质和构造 模块一模块一 平行线折线模型拓展平行线折线模型拓展 1 1平行线折线模型平行线折线模型 模 型 示例剖析 2 b 1 3 a 若ab,则123 ; 若123 ,则ab 2 b 1 3 a 若ab,则123360 ; 若123360 ,则ab 2 2平行线折线模型拓展平行线折线模型拓展 模块二模块二 等积变形(利用平行线来。

9、 第第 1 1 讲讲 一一、直线的相交直线的相交 1 1两条直线的位置关系两条直线的位置关系 在同一平面内,两条直线要么相交,要么平行 【注】【注】两条直线:有且只有一个公共点,两直线相交; 无公共点,则两直线平行; 两个或两个以上公共点,则两直线重合,视为一条直线 2 2直线的相交直线的相交两线四角两线四角 (1)邻补角邻补角:两条直线相交所构成的四个角中,有一条公共边且另一边互为反向延长线的。

标签 > 同步培优课程教师版[编号:54780]