三角形全等判定sss试卷

专题专题 17 17 全等三角形判定与性质定理全等三角形判定与性质定理 1.1.基本概念基本概念 (1)全等形:能够完全重合的两个图形叫做全等形. (2)全等三角形:能够完全重合的两个三角形叫做全等三角形. (注意对应的顶点写在对应的位置上) (3)对应顶点:全等三角形中互相重合的顶点叫做对应顶点.

三角形全等判定sss试卷Tag内容描述:

1、专题专题 17 17 全等三角形判定与性质定理全等三角形判定与性质定理 1.1.基本概念基本概念 (1)全等形:能够完全重合的两个图形叫做全等形. (2)全等三角形:能够完全重合的两个三角形叫做全等三角形. (注意对应的顶点写在对应的位置上) (3)对应顶点:全等三角形中互相重合的顶点叫做对应顶点. (4)对应边:全等三角形中互相重合的边叫做对应边. (5)对应角:全等三角形中互相重合的角叫做对。

2、 1 专题专题 16 16 全等三角形判定和性质问题全等三角形判定和性质问题 1全等三角形:能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。 2全等三角形的表示 全等用符号“”表示,读作“全等于” 。如ABCDEF,读作“三角形 ABC 全等于三角形 DEF” 。 注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。 3全等三角形的性质: 全等三角形的。

3、1第三节 全等三角形姓名:_ 班级:_ 用时:_分钟1(2018黔南州中考)下列各图中 a,b,c 为三角形的边长,则甲、乙、丙三个三角形和左侧ABC 全等的是( )A甲和乙 B乙和丙C甲和丙 D只有丙2(2019易错题)如图,点 D,E 分别在线段 AB,AC 上,CD 与 BE相交于 O点,已知 ABAC,现添加以下哪个条件仍不能判定ABEACD( )ABC BADAECBDCE DBECD3(2019改编题)下列说法正确的是( )A形状相同的两个三角形全等B面积相等的两个三角形全等C完全重合的两个三角形全等D所有的等边三角形全等4(2018淄川一模)如图,在ABC 和BDE 中,点 C在 BD边上,AC 边交 BE边。

4、3 探索三角形全等的条件,导入新课,讲授新课,当堂练习,课堂小结,第四章 三角形,第3课时 利用“边角边”判定三角形全等,情境引入,1探索并正确理解三角形全等的判定方法“SAS”.(重点)2会用“SAS”判定方法证明两个三角形全等及进行简单的应用(重点)3.了解“SSA”不能作为两个三角形全等的条件(难点),1.回顾三角形全等的判定方法1三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”).,知识回顾,导入新课,当两个三角形满足六个条件中的3个时,有四种情况:,除了SSS外,还有其他情况吗?,思考,讲授新课,问题:已知一个三角形的。

5、3 探索三角形全等的条件,导入新课,讲授新课,当堂练习,课堂小结,第四章 三角形,第1课时 利用“边边边”判定三角形全等,1.了解三角形的稳定性,掌握三角形全等的“SSS”判定,并能应用它判定两个三角形是否全等; (重点) 2.由探索三角形全等条件的过程,体会由操作、归纳获得数学结论的过程(难点),学习目标,1. 什么叫全等三角形?,能够重合的两个三角形叫 全等三角形.,3.已知ABC DEF,找出其中相等的边与角.,AB=DE, CA=FD, BC=EF, A= D, B=E, C= F,2. 全等三角形有什么性质?,全等三角形的对应边相等,对应角相等.,导入新课,如果只满足。

6、第 1 页,共 19 页三角形全等的判定测试题(时间:60 分钟)题号 一 二 三 四 总分得分一、选择题(本大题共 10 小题,共 30.0 分)1. 如图,点 D,E 分别在线段 AB,AC 上,CD 与 BE 相交于O 点,已知 ,现添加以下的哪个条件仍不能判定= ()A. =B. =C. =D. =2. 如图,直线 L 上有三个正方形 a,b,c,若 a,c 的面积分别为 1 和 9,则 b 的面积为 ( )A. 8 B. 9 C. 10 D. 113. 如图,点 B、F、C、E 在一条直线上, , ,那么添加下列一个条/件后,仍无法判定 的是 ( )A. B. C. D. = = = =4. 如图,已知 , ,从下列条件:1=2 =中添加一=个条。

7、第 1 页,共 11 页直角三角形全等的判定(45 分钟小测验)题号 一 二 三 四 总分得分一、选择题(本大题共 6 小题,共 18.0 分)1. 如图, 中, , 于 D, 于= E,BD 和 CE 交于 O,AO 的延长线交 BC 于 F,则图中全等的直角三角形有 ( )A. 3 对B. 4 对C. 5 对D. 6 对2. 如图,若要用“HL”证明 ,则还需补充条件 ( )A. =B. 或=C. 且=D. 以上都不正确3. 下列说法中,正确的个数是 ( )斜边和一直角边对应相等的两个直角三角形全等;有两边和它们的对应夹角相等的两个直角三角形全等;一锐角和斜边对应相等的两个直角三角形全等;两个锐角对应。

8、12.2 三角形全等的判定基础闯关全练拓展训练1.如图(1)所示,A,E,F,C 在一条直线上,AE=CF,过 E,F 分别作 DEAC,BFAC,若 AB=CD.(1)求证:GF=GE;(2)若将DEC 的边 EC 沿 AC 方向移动,变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.2.如图,RtABC 中,AC=7 cm,BC=3 cm,CD 为斜边 AB 上的高,点 E 从点 B 出发沿直线 BC 以2 cm/s 的速度移动,过点 E 作 BC 的垂线交直线 CD 于点 F.(1)求证:A=BCD;(2)点 E 运动多长时间时,CF=AB?并说明理由.能力提升全练拓展训练1.已知一等腰三角形的腰长为 5,底边长为 4,底角为 .满足下列条件的三角形与已知三。

9、教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 直角三角形性质及全等判定 待提升的知 识点/题型 (尚孔教研院彭高钢)(尚孔教研院彭高钢)知识梳理知识梳理(尚孔教研院彭高钢)(尚孔教研院彭高钢) (尚孔教研院彭高钢(尚孔教研院彭高钢知识点一知识点一 1、直角三角形全等的判定 (1)定理:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简 称“H.L”定理) (2)判定两。

10、第十一章 三角形,12.2 三角形全等的判定(第3课时),第十二章 全等三角形,作业布置,评价,小结,巩固练习,讲授新课,复习,教学过程,有三边分别相等的 两个三角形全等.,边边边:,有两边和它们的夹角分别相等的两个三角形全等.,边角边:,新课讲授,(一)类比联想,结合实例发现,创设情景,实例引入,画图验证,总结出结论,对应练习,例题讲解,(二)得出结论,(三)应用举例,猜想,一张教学用的三角形硬纸板不小心 被撕坏了,如图,你能制作一张与原来 同样大小的新教具吗?能恢复原来三角形 的原貌吗?,C,B,E,A,D,先任意画出一个ABC, 再画一个ABC,使。

11、第2课时,12.2 三角形全等的判定,1三角形全等的“边角边”的条件 2经历探索三角形全等条件的过程,体会利用操作、归纳获 得数学结论的过程 3掌握三角形全等的“SS”条件,了解三角形的稳定性 4能运用“SS”证明简单的三角形全等问题,还记得作一个角等于已知角的方法吗?,做一做:先任意画出ABC.再画一个ABC, 使AB=AB, AC=AC,A=A.(即有两边和它们 的夹角相等).把画好的ABC剪下,放到ABC上, 它们全等吗?,画法:,2. 在射线AM上截取AB=AB,3. 在射线AN上截取AC=AC,1. 画MAN=A,4. 连接BC,ABC就是所求的三角形.,三角形全等判定二: 两边和它们的夹。

12、第4课时,12.2 三角形全等的判定,1经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程; 2.掌握直角三角形全等的条件,并能运用其解决一些实际 问题; 3.在探索直角三角形全等条件及其运用的过程中,能够进 行有条理的思考并进行简单的推理,我们已经学过判定全等三角形的方法有哪些?,1、边边边(SSS),3、角边角(ASA),4、角角边(AAS),2、边角边(SAS),如图,AB BE于B,DEBE于E,,(1)若 A= D,AB=DE, 则 ABC与 DEF (填“全等”或“不全等”)根据 (用简写法).,全等,ASA,(2)若 A= D,BC=EF,则 ABC与 DEF (填 。

13、直角三角形全等的判定教学目标:1熟练掌握“斜边、直角边定理” ,以及熟练地利用这个定理和判定一般三角形全等的方法判定两个直角三角形全等;(重点)2熟练使用“分析综合法”探求解题思路(难点)教学过程:一、情境导入前面我们学习了判定两个三角形全等的四种方法SAS、ASA.AAS、SSS.当然这些方法也适用于判定两个直角三角形全等,那么直角三角形的全等的判定还有其他的方法吗?二、合作探究探究点一:运用“HL”判定直角三角形全等如图所示, AD BC, CE AB,垂足分别为 D.E, AD 交 CE 于点 F, AD EC.求证:FA FC.解析:要利用“等角对等。

14、第1课时,12.2 三角形全等的判定,1会用“边边边”判定三角形全等 2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,AB=DE BC=EF CA=FD A=D B=E C=F,1、什么叫全等三角形?,能够重合的两个三角形叫全等三角形.,2、全等三角形有什么性质?,问题一:根据上面的结论,两个三角形全等,它们的三个角、三条边分别对应相等,那么反过来,如果两个三角形中上述六个元素对应相等,是否一定全等?,问题二:两个三角形全等,是否一定需要六个条件呢?如果只满足上述一部分条件,是否我们也能说明他们全等?,任意画ABC,使AB=3cm。

15、专题16 全等三角形判定和性质问题专题知识回顾 1全等三角形:能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。2全等三角形的表示全等用符号“”表示,读作“全等于”。如ABCDEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3全等三角形的性质: 全等三角形的对应角相等、对应边相等。 4三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边。

16、教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 直角三角形性质及全等判定 待提升的知 识点/题型 (尚孔教研院彭高钢)(尚孔教研院彭高钢)知识梳理知识梳理(尚孔教研院彭高钢)(尚孔教研院彭高钢) (尚孔教研院彭高钢(尚孔教研院彭高钢知识点一知识点一 1、直角三角形全等的判定 (1)定理:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简 称“H.L”定理) (2)判定两。

17、全 等 三 角 形一.选 择题1. (2 018遂宁 4 分) 下 列说法 正确 的是 ( ) A有 两条 边和 一个 角对 应 相等的 两个 三角 形全 等 B正 方形 既是 轴对 称图 形 又是中 心对 称图 形 C矩 形的 对角 线互 相垂 直 平分 D六 边形 的内 角和 是 540【分析 】直 接利 用全 等三 角形的 判定 以及 矩形 、菱 形的性 质和 多边 形内 角和 定理【解答 】 解 : A.有两 条边 和一个 角对 应相 等的 两个 三角形 全等 , 错 误, 必须 是两边 及其 夹角 分别对 应相 等的 两个 三角 形全等 ;B.正方 形既 是轴 对称 图形 又是中 心对 称图 形, 正。

18、专题16 全等三角形判定和性质问题专题知识回顾 1全等三角形:能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。2全等三角形的表示全等用符号“”表示,读作“全等于”。如ABCDEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3全等三角形的性质: 全等三角形的对应角相等、对应边相等。 4三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边。

19、12.2 三角形全等的判定,第一课时,第二课时,人教版 数学 八年级 上册,第三课时,第四课时,第一课时,“边边边”定理,为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据,能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的角度吗?,3. 掌握用尺规作一个角等于已知角的作图法,1. 探索三角形全等条件,明确探索方向和过程.,2. 掌握“边边边”。

20、直角三角形全等的条件(HL),回顾:,AB AC BC A B ACB,DE DF EF D DEFF,回 顾 与 练 习,1、除定义外判定两个三角形全等方法:, , , 。,SSS,ASA,AAS,SAS,2、如图,RtABC中, 直角边 、 ,斜边 。,BC,AC,AB,3、如图,ABBE于C,DEBE于E,请同学们加入适当的条件,使得两个三角形全等,如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?,-,-,=,=,学习目标: 1、掌握直角三角形全等的判定方法斜边直角边; 2、熟练运用“HL”定理证明直角三角形全等; 3、能够运用“HL”定理解决有关问题.,做一做,用尺规作图法,做一。

【三角形全等判定sss试卷】相关PPT文档
【三角形全等判定sss试卷】相关DOC文档
标签 > 三角形全等判定sss试卷[编号:167193]