三角函数定义

1.2.1三角函数的定义第一章1.2任意角的三角函数学习目标1.理解任意角的三角函数的定义.2.掌握三角函数在各个象限的符号.3.掌握正弦、余弦、正切函数的定义域.题1.2任意角的三角函数1.2.1三角函数的定义学习目标1.理解任意角的三角函数的定义.2.掌握三角函数在各个象限的符号.3.掌握正弦、

三角函数定义Tag内容描述:

1、34函数yAsin (x)的图象与性质34.1三角函数的周期性基础过关1在函数ycos|2x|,y|cosx|,ycos(2x),ysin(x)中,最小正周期为的所有函数为()ABCD答案C解析ycos|2x|cos2x,T.由图象知,函数的周期T.T.T4.综上可知,最小正周期为的所有函数为.2函数f(x)sin的最小正周期为,其中0,则等于()A5 B10 C15 D20答案B3设函数f(x)sin,xR,则f(x)是()A最小正周期为的奇函数B最小正周期为的偶函数C最小正周期为的奇函数D最小正周期为的偶函数答案B解析sinsincos2x,f(x)cos2x.又f(x)cos(2x)cos2xf(x),f(x)是最小正周期为的偶函数4下列函数中,不是。

2、9三角函数的简单应用基础过关1如图,是一向右传播的绳波在某一时刻绳子各点的位置图,经过周期后,乙的位置将移至()A甲B乙C丙D丁解析该题目考察了最值与周期间的关系;相邻的最大值与最小值之间间隔区间长度相差半个周期,选C.答案C2电流强度I(安)随时间t(秒)变化的函数IAsin(t)(A0,0,0)的图像如图所示,则当t秒时,电流强度是()A5安B5安C5 安D10安解析由图像知A10,100,I10sin(100t)(,10)为五点中的第二个点,100.,I10sin(100t),当t秒时,I5安答案A3若近似认为月球绕地球公转与地球绕太阳公转的轨道在同一平面内,且均为正圆,又知。

3、9三角函数的简单应用一、选择题1.如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过周期后,乙的位置将移至()Ax轴上 B最低点C最高点 D不确定考点三角函数模型的应用题点三角函数在天文、物理学方面的应用答案C2.一单摆如图所示,以OA为始边,OB为终边的角()与时间t(s)满足关系式sin,t0,),则当t0时,角的大小及单摆频率是()A2, B., C., D2,考点三角函数模型的应用题点三角函数在天文、物理学方面的应用答案B解析当t0时,sin,由函数解析式易知单摆周期为,故单摆频率为.3初速度为v0,发射角为,则炮弹上升的高度y与v0之间的。

4、1同角三角函数的基本关系一、选择题1. 等于()Asin Bcos Csin Dcos 答案A解析00,sin .2已知是第二象限角,tan ,则cos 等于()A B C D答案C解析是第二象限角,cos 0.又sin2cos21,tan ,cos .3下列四个结论中可能成立的是()Asin 且cos Bsin 0且cos 1Ctan 1且cos 1D是第二象限角时,tan 考点同角三角函数基本关系题点运用基本关系式求值答案B4函数y的值域是()A0,2 B2,0C2,0,2 D2,2答案C解析y.当x为第一象限角时,y2;当x为第三象限角时,y2;当x为第二、四象限角时,y0.。

5、1同角三角函数的基本关系基础过关1如果是第二象限的角,下列各式中成立的是()Atan Bcos Csin Dtan 解析由商数关系可知A、D均不正确,当为第二象限角时,cos 0,故B正确答案B2已知2,则sin cos 的值是()A.B C.D解析由题意得sin cos 2(sin cos ),(sin cos )24(sin cos )2,解得sin cos .答案C3已知是第二象限的角,tan ,则cos 等于()ABCD解析是第二象限角,cos 0.又sin2cos21,tan ,cos .答案C4若为第三象限角,则_.解析为第三象限角,sin 0,cos 0,原式。

6、3二倍角的三角函数(二) 基础过关1下列各式与tan 相等的是()A. B.C. D.解析tan .答案D2已知180360,则cos 的值为()A B. C D. 答案C3使函数f(x)sin(2x)cos(2x)为奇函数的的一个值是()A. B. C. D.解析f(x)sin(2x)cos(2x)2sin.当时,f(x)2sin(2x)2sin 2x.答案D4已知sincos,且(,3),则tan_.解析由条件知(,),tan0.由sincos,1sin .sin ,cos ,tan2.答案25函数f(x)sin(2x)2sin2x的最小正周期是_解析f(x)sin 2xcos 2x(1cos 2x)sin。

7、微专题突破三破解三角函数的参数问题三角函数的参数问题是三角函数中的一类热点问题,也是难点问题,下面就几道题谈谈这类问题的破解之道例1已知0,函数f(x)sin在上是减少的,则的取值范围是()A. B. C. D(0,2)考点正弦函数、余弦函数的单调性题点正弦函数、余弦函数单调性的应用答案A解析方法一由0,得x.又因为ysin x在上是减少的,所以解得,故选A.方法二由2kx2k,kZ,得x,kZ.因此函数f(x)的单调减区间为,kZ.由题意知,所以解得,故选A.点评解决这类与单调性有关的参数问题,一是直接先求出括号内整体的范围,然后列不等式求解;二是先。

8、微专题突破九聚焦三角函数最值的求解策略一、化为yAsin(x)B的形式求解例1求函数f(x)的最值考点利用二倍角公式化简求值题点利用二倍角公式化简三角函数式解原函数变形得f(x)sin 2x.f(x)max,f(x)min.例2求函数ysin2x2sin xcos x3cos2x的最小值,并写出y取最小值时x的集合考点利用二倍角公式化简求值题点利用二倍角公式求三角函数值解原函数化简得ysin 2xcos 2x2sin2.当2x2k,kZ,即xk,kZ时,ymin2.此时x的集合为.点评形如yasin2xbsin xcos xccos2xd(a,b,c,d为常数)的式子,都能转化成yAsin(2x)B的形式求最值二、利用函数的单调性求解例。

9、章末复习1任意角三角函数的定义在平面直角坐标系中,设是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫作的正弦,记作sin ,即sin y;(2)x叫作的余弦,记作cos ,即cos x;(3)叫作的正切,记作tan ,即tan (x0)2诱导公式诱导公式可以统一概括为“k(kZ)”的诱导公式当k为偶数时,函数名不改变;当k为奇数时,函数名改变,然后前面加一个把视为锐角时原函数值的符号记忆口诀为“奇变偶不变,符号看象限”3正弦函数、余弦函数和正切函数的性质函数ysin xycos xytan x图像定义域RRx|xR且xk,kZ值域1,11,1R对称性对称轴:xk(kZ);。

10、章末检测(一)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1若点P(sin cos ,2cos )位于第三象限,则角终边在第几象限()A一B二C三D四解析由题意知故角终边在第二象限答案B2已知sin,那么cos 等于()AB C. D.解析sincos ,cos .答案C3已知角的终边上一点的坐标为,则角的最小正值为()A. B. C. D.解析因为sinsinsin,coscoscos,所以点在第四象限又因为tan tantan,所以角的最小正值为.故选D.答案D4已知tan x0,且sin xcos x0,那么角x是第_象限角()A一 B二 C三 D四解析tan x0,x是第一或第三象限。

11、章末检测(一)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1若点P(sin cos ,2cos )位于第三象限,则角终边在第几象限()A一B二C三D四解析由题意知故角终边在第二象限答案B2已知sin,那么cos 等于()AB C. D.解析sincos ,cos .答案C3已知角的终边上一点的坐标为,则角的最小正值为()A. B. C. D.解析因为sinsinsin,coscoscos,所以点在第四象限又因为tan tantan,所以角的最小正值为.故选D.答案D4已知tan x0,且sin xcos x0,那么角x是第_象限角()A一 B二 C三 D四解析tan x0,x是第一或第三象限。

12、3.2.2同角三角函数之间的关系学习目标1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明知识链接1任意角的正弦、余弦、正切函数分别是如何定义的?答在直角坐标系中,以原点为圆心,以单位长度为半径的圆为单位圆锐角的终边与单位圆交于P(x,y)点,则有siny,cosx,tan.2如何利用任意角的三角函数的定义推导同角三角函数的基本关系式?答设点P(x,y)为终边上任意一点,P与O不重合P到原点的距离为r0,则sin,cos,tan.于是sin2cos2。

13、3.2.1任意角三角函数的定义(二)学习目标1.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切.2.能利用三角函数线解决一些简单的三角函数问题知识链接什么叫做单位圆?答以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米)预习导引1三角函数的定义域正弦函数ysinx的定义域是R;余弦函数ycosx的定义域是R;正切函数ytanx的定义域是x|xR,且xk,kZ2三角函数线如图,设单位圆与x轴的正半轴交于点A,与角的终边交于P点过点P作x轴的垂线PM,垂足为M,过A作单位圆的切。

14、12任意角的三角函数12.1三角函数的定义基础过关1有下列说法:终边相同的角的同名三角函数的值相等;终边不同的角的同名三角函数的值不等;若sin0,则是第一、二象限的角;若是第二象限的角,且P(x,y)是其终边上一点,则cos,其中正确的个数为()A0 B1 C2 D3答案B解析只有正确2当为第二象限角时,的值是()A1 B0 C2 D2答案C解析为第二象限角,sin0,cos0.2.3角的终边经过点P(b,4)且cos,则b的值为()A3 B3C3 D5答案A解析r,cos.b3.4若tanx0,且sinxcosx0,则角x的终边在()A第一象限 B第二象限C第三象限 D第四象限答案D解析tanx0,角x。

15、32任意角的三角函数32.1任意角三角函数的定义(一)基础过关1有下列说法:终边相同的角的同名三角函数的值相等;终边不同的角的同名三角函数的值不等;若sin0,则是第一、二象限的角;若是第二象限的角,且P(x,y)是其终边上一点,则cos,其中正确的个数为()A0B1C2D3答案B解析只有正确2当为第二象限角时,的值是()A1 B0C2D2答案C解析为第二象限角,sin0,cos0.2.3角的终边经过点P(b,4)且cos,则b的值为()A3 B3C3D5答案A解析r,cos.b3.4若tanx0,且sinxcosx0,则角x的终边在()A第一象限B第二象限C第三象限D第四象限答案D解析tanx<。

16、3.2.1任意角三角函数的定义(二)基础过关1有三个命题:和的正弦线长度相等;和的正切线相同;和的余弦线长度相等其中正确说法的个数为()A1 B2C3D0答案C解析和的正弦线关于y轴对称,长度相等;和两角的正切线相同;和的余弦线长度相等故都正确,故选C.2利用正弦线比较sin1,sin1.2,sin1.5的大小关系是()Asin1sin1.2sin1.5Bsin1sin1.5sin1.2Csin1.5sin1.2sin1Dsin1.2sin1sin1.5答案C解析1,1.2,1.5均在内,正弦线在内随的增大而逐渐增大,sin1.5sin1.2sin1.3函数ytan的定义域为()A.B.C.D.答案C解析xk,kZ,xk,kZ.4设asin(1),bcos(1),ctan(。

17、32任意角的三角函数32.1任意角三角函数的定义(一)学习目标1.理解任意角的三角函数的定义.2.掌握三角函数在各个象限的符号知识链接在初中,我们已经学过锐角三角函数如图,在RtABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦,余弦,正切分别是什么?答锐角A的正弦,余弦,正切依次为:sinA,cosA,tanA.预习导引1三角函数的定义(1)正弦、余弦、正切如图,在的终边上任取一点P(x,y),设OPr(r0)定义:sin,cos,tan,分别称为角的正弦、余弦、正切依照上述定义,对于每一个确定的角,都分别有唯一确定的正弦值、余弦值与之对应:当a2。

18、1.2任意角的三角函数1.2.1三角函数的定义一、选择题1.已知sin 0,且tan 0,则为()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角答案D2.已知角的终边经过点(3a9,a2),且cos 0,sin 0,则实数a的取值范围是()A.(2,3 B.(2,3)C.2,3) D.2,3答案A解析由题意,得解得2a3,故选A.3.已知是第二象限角,P(x,)为其终边上一点,且cos x,则x的值为()A. B.C. D.答案D解析cos x,x0或2(x25)16,x0或x23,x0(是第二象限角,舍去)或x(舍去)或x.故选D.4.若是第四象限的角,则下列函数值一定是负值的是()A.sin B.cos C.sin cos D.以上均不正确答案C。

19、1.2任意角的三角函数1.2.1三角函数的定义学习目标1.理解任意角的三角函数的定义.2.掌握三角函数在各个象限的符号.3.掌握正弦、余弦、正切函数的定义域.知识点一任意角的三角函数使锐角的顶点与原点O重合,始边与x轴的正半轴重合,在终边上任取一点P,作PMx轴于点M,设P(x,y),|OP|r.(1)定义叫做角的余弦,记作cos ,即cos ;叫做角的正弦,记作sin ,即sin ;叫做角的正切,记作tan ,即tan .依照上述定义,对于每一个确定的角,都分别有唯一确定的余弦值、正弦值与之对应;当k(kZ)时,它有唯一的正切值与之对应.因此这三个对应法则都是。

20、1.2.1 三角函数的定义,第一章 1.2 任意角的三角函数,学习目标 1.理解任意角的三角函数的定义. 2.掌握三角函数在各个象限的符号. 3.掌握正弦、余弦、正切函数的定义域.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 任意角的三角函数,角的正弦、余弦、正切分别等于什么?,答案,使锐角的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PMx轴于M,设P(x,y),|OP|r.,思考2,对确定的锐角,sin ,cos ,tan 的值是否随P点在终边上的位置的改变而改变?,答案,答案 不会.因为三角函数值是比值,其大小与点P(x。

【三角函数定义】相关PPT文档
【三角函数定义】相关DOC文档
§9 三角函数的简单应用 课时作业含答案
§9 三角函数的简单应用 课时对点练含答案
第一章三角函数 章末复习学案(含答案)
第一章三角函数 章末检测试卷含答案
第一章三角函数 章末检测试卷及答案
1.2.1 三角函数的定义 学案(含答案)
标签 > 三角函数定义[编号:65398]