人教B版高中数学必修三课件3.1.4 概率的加法公式

1.1.2 程序框图 1.1.3 算法的三种基本逻辑结构和框图表示(一),学习目标 1.熟悉各种程序框及流程线的功能与作用. 2.能够读懂简单的程序框图. 3.能够用程序框图表示顺序结构的算法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 程序框图,许多办事机构都有工作流程图,

人教B版高中数学必修三课件3.1.4 概率的加法公式Tag内容描述:

1、1.1.2 程序框图 1.1.3 算法的三种基本逻辑结构和框图表示(一),学习目标 1.熟悉各种程序框及流程线的功能与作用. 2.能够读懂简单的程序框图. 3.能够用程序框图表示顺序结构的算法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 程序框图,许多办事机构都有工作流程图,你觉得要向来办事的人员解释工作流程,是用自然语言好,还是用流程图好?,使用流程图好.因为使用流程图表达更直观准确.,答案,1.程序框图的概念 通常用一些通用 构成一张图来表示算法,这种图称做_ (简称 ). 2.构成程序框图的图形符号及其作用,梳理,图形符。

2、第一章 1.1 算法与程序框图,1.1.3 算法的三种基本逻辑结构和框图表示(二),学习目标 1.掌握条件分支结构的程序框图的画法. 2.能用条件分支结构框图描述分类讨论问题的算法. 3.进一步熟悉程序框图的画法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 条件分支结构,我们经常需要处理分类讨论的问题,顺序结构能否完成这一任务?为什么?,分类讨论是带有分支的逻辑结构,而顺序结构是一通到底的“直肠子”,所以不能表达分支结构,这就需要条件分支结构出场.,答案,思考2,有些问题需要按给定的条件进行分析、比较和判断,在。

3、第一章 1.1 算法与程序框图,1.1.3 算法的三种基本逻辑结构和框图表示(三),学习目标 1.掌握循环结构的程序框图的画法. 2.理解循环结构程序框图的执行功能,并能正确解题.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 循环结构,用累加法计算123100的值,其中有没有重复操作的步骤?,用S表示每一步的计算结果,S加下一个数得到一个新的S,这个步骤被重复了100次.,答案,思考2,循环结构的程序框图中一定含有判断框吗?,一定含有.在循环结构中需要判断是否执行循环体,故循环结构的程序框图中一定含有判断框.,答案,思考3,什么。

4、2.1.2 系统抽样,2.1.3 分层抽样,2.1.4 数据的收集,学习目标 1.理解并掌握系统抽样、分层抽样. 2.会用系统抽样、分层抽样从总体中抽取样本. 3.理解三种抽样的区别与联系.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 系统抽样,当总体中的个体数较多时,为什么不宜用简单随机抽样?,因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀”,从而使样本的代表性不强.,答案,思考2,用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体。

5、2.2.1 用样本的频率分布估计总体的分布(二),第二章 2.2 用样本估计总体,学习目标 1.了解频率分布折线图和总体密度曲线的定义. 2.理解茎叶图的概念,会画茎叶图. 3.了解频率分布直方图、频率分布折线图、茎叶图的各自特征,学会选择不同的方法分析样本的分布,从而作出总体估计.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 频率分布折线图和总体密度曲线,1.频率分布折线图 用线段连接频率分布直方图中各个长方形 ,就得到频率分布折线图. 2.总体密度曲线 在样本频率分布直方图中,随着样本容量的增加,作图时所分的_ 增加,组。

6、2.2.2 用样本的数字特征估计总体的数字特征,第二章 2.2 用样本估计总体,学习目标 1.能合理地选取样本,并从中提取基本的数字特征. 2.了解众数、中位数、平均数的概念,会计算方差和标准差. 3.进一步体会用样本估计总体的思想,会用样本的数字特征估计总体的数字特征.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 众数、中位数、平均数,平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?,平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但它的缺点是平均数受数据中极端值。

7、2.2.1 用样本的频率分布估计总体的分布(一),第二章 2.2 用样本估计总体,学习目标 1.体会分布的意义和作用. 2.学会用频率分布表,画频率分布直方图表示样本数据. 3.能通过频率分布表或频率分布直方图对数据做出总体统计.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 用样本估计总体,还记得我们抽样的初衷吗?,用样本去估计总体,为决策提供依据.,答案,用样本的 估计总体的分布.,梳理,频率分布,思考1,知识点二 频率分布表与频率分布直方图,要做频率分布表,需要对原始数据做哪些工作?,分组,频数累计,计算频数和频率.,答。

8、2.3 变量的相关性,第二章 统 计,学习目标 1.了解变量间的相关关系,会画散点图. 2.根据散点图,能判断两个变量是否具有相关关系. 3.了解线性回归思想,会求回归直线的方程.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 变量间的相关关系,粮食产量与施肥量间的相关关系是正相关还是负相关?,在施肥不过量的情况下,施肥越多,粮食产量越高,所以是正相关.,答案,思考2,怎样判断一组数据是否具有线性相关关系?,画出散点图,若点大致分布在一条直线附近,就说明这两个变量具有线性相关关系,否则不具有线性相关关系.,答案,。

9、3.3 随机数的含义与应用 3.4 概率的应用,学习目标 1.通过具体问题感受几何概型的概念,体会几何概型的意义. 2.会求一些简单的几何概型的概率. 3.了解随机数的意义,能用计算机随机模拟法估计事件的概率. 4.应用概率解决实际问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 几何概型的概念,往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这个试验可能出现的结果是有限个,还是无限个?若没有人为因素,每个试验结果出现的可能性是否相等?,出现的结果是无限个;每个结果出现的可能性是相等的.,答案,1.几何概。

10、章末复习课,第三章 概 率,学习目标 1.理解频率与概率的关系,会用随机模拟的方法用频率估计概率. 2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率. 3.能区分古典概型与几何概型,并能求相应概率.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.频率与概率 频率是概率的 ,是随机的,随着试验的不同而 ;概率是多数次的试验中 的稳定值,是一个 ,不要用一次或少数次试验中的频率来估计概率. 2.求较复杂概率的常用方法 (1)将所求事件转化为彼此 的事件的和; (2)先求其 事件的概率,然后再应用公式P(A。

11、第一章 1.1 算法与程序框图,1.1.1 算法的概念,学习目标 1.了解算法的含义. 2.了解算法的思想. 3.会用自然语言描述一些具体问题的算法,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 算法的概念,有一碗酱油,一碗醋和一个空碗现要把两碗盛的物品交换过来,试用自然语言表述你的操作办法,先把醋倒入空碗,再把酱油倒入原来盛醋的碗,最后把倒入空碗中的醋倒入原来盛酱油的碗,就完成了交换,答案,思考2,某笑话有这样一个问题:把大象装进冰箱总共分几步?答案是分三步第一步:把冰箱门打开;第二步:把大象装进去;第三步:。

12、3.1.3 频率与概率,第三章 3.1 事件与概率,学习目标 1.在具体情景中,了解随机事件发生的频率的稳定性与概率的意义. 2.理解频率与概率的区别与联系.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点 频率与概率,同一个随机事件在相同条件下在每一次试验中发生的概率都一样吗?,概率是从数量上反映随机事件在一次试验中发生可能性的大小的一个量,是一个确定的数,是客观存在的,与每次试验无关;同一个随机事件在相同条件下在每一次试验中发生的概率都是一样的.,答案,(1)定义:在n次重复进行的试验中,事件A发生的频率 ,当n很。

13、3.1.4 概率的加法公式,第三章 3.1 事件与概率,学习目标 1.理解互斥事件与对立事件的区别与联系. 2.会用互斥事件的概率加法公式求概率. 3.会用对立事件的概率公式求概率.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 事件的运算,一粒骰子掷一次,记事件C出现的点数为偶数,事件D出现的点数小于3,当事件C,D都发生时,掷出的点数是多少?事件C,D至少有一个发生时呢?,事件C,D都发生,即掷出的点数为偶数且小于3,故此时掷出的点数为2.事件C,D至少有一个发生,掷出的点数可以是1,2,4,6.,答案,事件的并 一般地,由事件A。

【人教B版高中数学必修三课件】相关PPT文档
标签 > 人教B版高中数学必修三课件3.1.4 概率的加法公式[编号:91027]