人教B版高中数学必修三课件1.1.1 算法的概念

2.2.1 用样本的频率分布估计总体的分布(二),第二章 2.2 用样本估计总体,学习目标 1.了解频率分布折线图和总体密度曲线的定义. 2.理解茎叶图的概念,会画茎叶图. 3.了解频率分布直方图、频率分布折线图、茎叶图的各自特征,学会选择不同的方法分析样本的分布,从而作出总体估计.,题型探究,问题

人教B版高中数学必修三课件1.1.1 算法的概念Tag内容描述:

1、2.2.1 用样本的频率分布估计总体的分布(二),第二章 2.2 用样本估计总体,学习目标 1.了解频率分布折线图和总体密度曲线的定义. 2.理解茎叶图的概念,会画茎叶图. 3.了解频率分布直方图、频率分布折线图、茎叶图的各自特征,学会选择不同的方法分析样本的分布,从而作出总体估计.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 频率分布折线图和总体密度曲线,1.频率分布折线图 用线段连接频率分布直方图中各个长方形 ,就得到频率分布折线图. 2.总体密度曲线 在样本频率分布直方图中,随着样本容量的增加,作图时所分的_ 增加,组。

2、2.2.2 用样本的数字特征估计总体的数字特征,第二章 2.2 用样本估计总体,学习目标 1.能合理地选取样本,并从中提取基本的数字特征. 2.了解众数、中位数、平均数的概念,会计算方差和标准差. 3.进一步体会用样本估计总体的思想,会用样本的数字特征估计总体的数字特征.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 众数、中位数、平均数,平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?,平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但它的缺点是平均数受数据中极端值。

3、2.2.1 用样本的频率分布估计总体的分布(一),第二章 2.2 用样本估计总体,学习目标 1.体会分布的意义和作用. 2.学会用频率分布表,画频率分布直方图表示样本数据. 3.能通过频率分布表或频率分布直方图对数据做出总体统计.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 用样本估计总体,还记得我们抽样的初衷吗?,用样本去估计总体,为决策提供依据.,答案,用样本的 估计总体的分布.,梳理,频率分布,思考1,知识点二 频率分布表与频率分布直方图,要做频率分布表,需要对原始数据做哪些工作?,分组,频数累计,计算频数和频率.,答。

4、1.1.2 程序框图 1.1.3 算法的三种基本逻辑结构和框图表示(一),学习目标 1.熟悉各种程序框及流程线的功能与作用. 2.能够读懂简单的程序框图. 3.能够用程序框图表示顺序结构的算法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 程序框图,许多办事机构都有工作流程图,你觉得要向来办事的人员解释工作流程,是用自然语言好,还是用流程图好?,使用流程图好.因为使用流程图表达更直观准确.,答案,1.程序框图的概念 通常用一些通用 构成一张图来表示算法,这种图称做_ (简称 ). 2.构成程序框图的图形符号及其作用,梳理,图形符。

5、第一章 1.2 基本算法语句,1.2.1 赋值、输入和输出语句,学习目标 1.了解学习程序语句的必要性和根本目的. 2.理解赋值、输入和输出的格式和功能. 3.能把本节涉及的程序框转化为相应的程序语句.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 赋值语句,计算机用变量来存取数据.怎样表示“把变量a,b中的数据相加,存入c中”?,用赋值语句“cab”.,答案,思考2,输入语句和赋值语句都可以给变量赋值,二者有何不同?,输入语句可使初始值与程序分开,利用输入语句改变初始数据时,程序不变,而赋值语句是程序的一部分,输入语句。

6、2.1.1 简单随机抽样,第二章 2.1 随机抽样,学习目标 1.体会随机抽样的必要性和重要性. 2.理解随机抽样的目的和基本要求. 3.掌握简单随机抽样中的抽签法、随机数法的一般步骤.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 统计的基本概念,样本容量有单位吗?,没有.,答案,思考2,从高二(2)班60名学生中,抽取8名学生,调查视力状况.其中样本为“8名学生”,对否?,不对,样本应为“8名学生的视力状况”.,答案,1.总体:一般把所考察对象的某一数值指标的 构成的集合看作总体. 2.个体:构成总体的每一个元素作为个体. 3.样本。

7、2.1.1 向量的概念,第二章 2.1 向量的线性运算,学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别. 2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量. 3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 向量的概念及表示,在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?,答案,答案 面积、质量只有大小,没有方向;而速度和位。

8、2.3 变量的相关性,第二章 统 计,学习目标 1.了解变量间的相关关系,会画散点图. 2.根据散点图,能判断两个变量是否具有相关关系. 3.了解线性回归思想,会求回归直线的方程.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 变量间的相关关系,粮食产量与施肥量间的相关关系是正相关还是负相关?,在施肥不过量的情况下,施肥越多,粮食产量越高,所以是正相关.,答案,思考2,怎样判断一组数据是否具有线性相关关系?,画出散点图,若点大致分布在一条直线附近,就说明这两个变量具有线性相关关系,否则不具有线性相关关系.,答案,。

9、3.1.3 频率与概率,第三章 3.1 事件与概率,学习目标 1.在具体情景中,了解随机事件发生的频率的稳定性与概率的意义. 2.理解频率与概率的区别与联系.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点 频率与概率,同一个随机事件在相同条件下在每一次试验中发生的概率都一样吗?,概率是从数量上反映随机事件在一次试验中发生可能性的大小的一个量,是一个确定的数,是客观存在的,与每次试验无关;同一个随机事件在相同条件下在每一次试验中发生的概率都是一样的.,答案,(1)定义:在n次重复进行的试验中,事件A发生的频率 ,当n很。

10、3.2 古典概型,第三章 概 率,学习目标 1.理解古典概型及其概率计算公式. 2.会计算一些随机事件所含的基本事件数及事件发生的概率. 3.了解概率的一般加法公式及适用条件,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 古典概型,“在区间0,10上任取一个数,这个数恰为5的概率是多少?”这个概率模型属于古典概型吗?,不属于因为在区间0,10上任取一个数,其试验结果有无限个,故其基本事件有无限个,所以不是古典概型,答案,思考2,若一次试验的结果所包含的基本事件的个数为有限个,则该试验符合古典概型吗?,不一定符合还必须。

11、第一章 1.1 算法与程序框图,1.1.3 算法的三种基本逻辑结构和框图表示(二),学习目标 1.掌握条件分支结构的程序框图的画法. 2.能用条件分支结构框图描述分类讨论问题的算法. 3.进一步熟悉程序框图的画法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 条件分支结构,我们经常需要处理分类讨论的问题,顺序结构能否完成这一任务?为什么?,分类讨论是带有分支的逻辑结构,而顺序结构是一通到底的“直肠子”,所以不能表达分支结构,这就需要条件分支结构出场.,答案,思考2,有些问题需要按给定的条件进行分析、比较和判断,在。

12、第一章 1.1 算法与程序框图,1.1.3 算法的三种基本逻辑结构和框图表示(三),学习目标 1.掌握循环结构的程序框图的画法. 2.理解循环结构程序框图的执行功能,并能正确解题.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 循环结构,用累加法计算123100的值,其中有没有重复操作的步骤?,用S表示每一步的计算结果,S加下一个数得到一个新的S,这个步骤被重复了100次.,答案,思考2,循环结构的程序框图中一定含有判断框吗?,一定含有.在循环结构中需要判断是否执行循环体,故循环结构的程序框图中一定含有判断框.,答案,思考3,什么。

13、3.1.4 概率的加法公式,第三章 3.1 事件与概率,学习目标 1.理解互斥事件与对立事件的区别与联系. 2.会用互斥事件的概率加法公式求概率. 3.会用对立事件的概率公式求概率.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 事件的运算,一粒骰子掷一次,记事件C出现的点数为偶数,事件D出现的点数小于3,当事件C,D都发生时,掷出的点数是多少?事件C,D至少有一个发生时呢?,事件C,D都发生,即掷出的点数为偶数且小于3,故此时掷出的点数为2.事件C,D至少有一个发生,掷出的点数可以是1,2,4,6.,答案,事件的并 一般地,由事件A。

14、1.2.2 条件语句,第一章 1.2 基本算法语句,学习目标 1.了解条件语句和条件分支结构之间的对应关系. 2.理解条件语句的语法规则和用算法解决问题的一般步骤. 3.能够用条件语句编写条件分支结构的程序,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 条件语句的概念,处理 分支逻辑结构的算法语句,叫做条件语句,条件,知识点二 条件语句的类型、格式、功能,语句序列1,题型探究,例1 编写程序,输入两个不等的实数,由大到小输出这两个数,解答,类型一 条件语句的理解,程序如下:,(1)条件语句的执行顺序与算法框图中的选择结构的执行顺序。

15、1.2.3 循环语句,第一章 1.2 基本算法语句,学习目标 1.正确理解循环语句的概念,并掌握其结构. 2.会应用循环语句编写程序. 3.经历对现实生活情境的探究,认识到应用计算机解决数学问题方便、简捷.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 循环语句的概念和适用范围,循环语句与条件语句有何关系?,循环语句中一定有条件语句,条件语句是循环语句的一部分,离开条件语句,循环语句无法循环,但条件语句可以脱离循环语句单独存在,可以不依赖循环语句独立地解决问题.,答案,思考2,编写程序时,什么情况下使用循环语句?,。

16、章末复习课,第一章 算法初步,学习目标 1.加深对算法思想的理解. 2.加强用程序框图清晰条理地表达算法的能力. 3.进一步体会由自然语言到程序框图再到程序的逐渐精确的过程.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 算法、程序框图、程序语言,(1)算法的概念:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的 、 计算序列,并且这样的步骤或序列能够解决 . (2)程序框图:程序框图由 组成,按照 用_ 将程序框连接起来.结构可分为 结构、 结构和 结构. (3)算法语句:基本算法语句。

17、1.1.1 角的概念的推广,第一章 1.1 任意角的概念与弧度制,学习目标 1.了解角的概念. 2.掌握正角、负角和零角的概念,理解任意角的意义. 3.熟练掌握象限角、终边相同的角的概念,会用集合符号表示这些角.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 角的相关概念,我们在初中已经学习过角的概念,角可以看作从同一点出发的两条射线组成的平面图形.这种定义限制了角的范围,也不能表示具有相反意义的旋转量.那么,从“旋转”的角度,对角如何重新定义?正角、负角、零角是怎样规定的?,答案,答案 一条射线OA绕着端点O旋转到。

18、1.1.1 集合的概念,第一章 1.1 集合与集合的表示方法,学习目标 1.了解集合与元素的含义. 2.理解集合中元素的特征,并能利用它们进行解题. 3.理解集合与元素的关系. 4.掌握数学中一些常见的集合及其记法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 集合的概念,有首歌中唱道“他大舅他二舅都是他舅”,在这句话中,谁是集合?谁是集合中的元素?,答案,答案 “某人的舅”是一个集合,“某人的大舅、二舅”都是这个集合中的元素.,元素与集合的概念 (1)集合:把一些能够 对象看成一个整体,就说这个整体是由这些对象的 构成。

19、1.1.1 算法的概念,第一章 1.1 算法与程序框图,学习目标 1.了解算法的含义和特征. 2.会用自然语言描述简单的具体问题的算法.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 算法的概念,思考 解决一个问题的算法是唯一的吗? 答案 不唯一.如解二元一次方程组的算法有加减消元法和代入消元法两种,但不同的算法有优劣之分.,梳理 算法的概念,算术运算,一定规则,明确,有限,计算机程序,算法的五个特征 (1)有限性:一个算法的步骤是 的,它应在有限步操作之后停止. (2)确定性:算法中的每一步应该是 的,并且能有效地执行且得到确定的。

20、第一章 1.1 算法与程序框图,1.1.1 算法的概念,学习目标 1.了解算法的含义. 2.了解算法的思想. 3.会用自然语言描述一些具体问题的算法,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 算法的概念,有一碗酱油,一碗醋和一个空碗现要把两碗盛的物品交换过来,试用自然语言表述你的操作办法,先把醋倒入空碗,再把酱油倒入原来盛醋的碗,最后把倒入空碗中的醋倒入原来盛酱油的碗,就完成了交换,答案,思考2,某笑话有这样一个问题:把大象装进冰箱总共分几步?答案是分三步第一步:把冰箱门打开;第二步:把大象装进去;第三步:。

【人教B版高中数学必修三课件】相关PPT文档
人教B版高中数学必修三课件:3.2 古典概型
标签 > 人教B版高中数学必修三课件1.1.1 算法的概念[编号:91030]