数学必修三

1.3中国古代数学中的算法案例第一章算法初步学习目标1.理解辗转相除法与更相减损术中的数学原理,并能根据这些原理进行算法分析.2.理解割圆术中蕴含的数学原理.3.了解秦九韶算法及利用2.1.1简单随机抽样第二章2.1随机抽样学习目标1.体会随机抽样的必要性和重要性.2.理解随机抽样的目的和基本要求.

数学必修三Tag内容描述:

1、第一章 2 抽样方法,2.1 简单随机抽样,学习目标 1.体会随机抽样的必要性和重要性. 2.理解随机抽样的目的和基本要求. 3.掌握简单随机抽样中的抽签法、随机数法的一般步骤.,题型探究,问题导学,内容索引,当堂训练,问题导学,从含有甲、乙的9件产品中随机抽取一件,总体内的各个个体被抽到的机会相同吗?为什么?甲被抽到的机会是多少?,思考1,知识点一 简单随机抽样,答案,总体内的各个个体被抽到的机会是相同的.因为是从9件产品中随机抽取一件,这9件产品每件产品被抽到的机会都是1/9,甲也是1/9.,被抽取的样本总体的个数有限定条件吗?,思考2,。

2、1 从普查到抽样,第一章 统 计,学习目标 1.了解普查与抽样调查的概念. 2.了解随机抽样的必要性和重要性. 3.明确两种调查的优缺点,问题导学,达标检测,题型探究,内容索引,问题导学,思考 根据你的理解,举例说明我国常进行的普查有哪些?,答案 人口普查、工业普查、农业普查,知识点一 普查的概念,梳理 (1)普查的定义 普查是指一个国家或一个地区专门组织的一次性大规模的 ,目的是为了详细地了解某项重要的国情、国力 (2)普查的主要特点 所取得的资料更加 ; 主要调查在特定时段的社会经济现象总体的数量; 当普查的对象很少时,普查无疑是一。

3、第一章 统计,章末复习课,学习目标 1.会根据不同的特点选择适当的抽样方法获得样本数据. 2.能利用图、表对样本数据进行整理分析,用样本和样本的数字特征估计总体. 3.能利用散点图对两个变量是否相关进行初步判断,能用线性回归方程进行预测.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.抽样方法 (1)当总体容量较小,样本容量也较小时,可采用 . (2)当总体容量较大,样本容量较小时,可用 . (3)当总体容量较大,样本容量也较大时,可用 . (4)当总体由差异明显的几部分组成时,可用 . 2.用样本估计总体 用样本频率分布估计总体频率分。

4、第三章 概率,章末复习课,学习目标 1.理解频率与概率的关系,会用随机模拟的方法用频率估计概率. 2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率. 3.能区分古典概型与几何概型,并能求相应概率.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.频率与概率 频率是概率的 ,是随机的,随着试验的不同而 ;概率是多数次的试验中 的稳定值,是一个 ,不要用一次或少数次试验中的频率来估计概率. 2.求较复杂概率的常用方法 (1)将所求事件转化为彼此 的事件的和; (2)先求其 事件的概率,然后再应用公式P(A)。

5、章末复习课,第二章 算法初步,学习目标 1.加深对算法思想的理解. 2.加强用算法框图清晰条理地表达算法的能力. 3.进一步体会由自然语言到算法框图再到程序的逐渐精确的过程.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.算法的概念算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或看成按要求设计好的 、 计算序列,并且这样的步骤或序列能够解决_ 2.算法框图算法框图由 组成, 按照 用 将框图连接起来.结构可分为 结构、 结构和 结构.,有限的,确切的,一类问题.,框图,算法进行的顺序,流程线,顺序,选择,循环,3.算法。

6、3 模拟方法概率的应用,第三章 概率,学习目标 1.了解几何概型的定义及其特点. 2.会用几何概型的概率计算公式求几何概型的概率. 3.会用模拟方法估计某些随机事件的概率和不规则图形的面积.,题型探究,问题导学,内容索引,当堂训练,问题导学,往一个外圆内方的铜钱上投一粒小米,则小米可能的落点有多少个?怎样计算小米落入方孔中的概率?,思考,知识点一 几何概型的概念,答案,小米可能的落点有无限多,故不能,用古典概型计算小米落入方孔中的概率,但因为小米的落点个数与铜钱的面积成正比,故可用方孔与铜钱面积之比来计算小米落入方孔中的概。

7、2.3 互斥事件,第三章 2 古典概型,学习目标 1.通过实例了解互斥事件、事件AB及对立事件的概念和实际意义. 2.能根据互斥事件和对立事件的定义辨别一些事件是否互斥、对立. 3.学会用互斥事件概率加法公式计算一些事件的概率.,题型探究,问题导学,内容索引,当堂训练,问题导学,从一副去掉大小王的扑克牌中任抽一张,“抽到红桃”与“抽到方块”能否同时发生?,思考,知识点一 互斥事件,答案,不能.,梳理 在一个随机试验中,我们把一次试验下 的两个事件A与B称作互斥事件.,不能同时发生,知识点二 事件AB,思考,在知识点一的思考中,“抽到红色牌”包。

8、2.2 建立概率模型,第三章 2 古典概型,学习目标 1.能建立概率模型解决简单的实际问题. 2.能认识和理解对于同一个随机试验,可以根据需要来建立我们需要的概率模型. 3.学会选用比较简单、适用的概率模型解决实际生活中有关概率的问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,掷一粒均匀的骰子,计算“向上的点数为奇数”的概率,可以怎样规定基本事件?,思考,知识点一 基本事件的相对性,答案,可以规定向上的点数为1,2,3,4,5,6共6个基本事件;也可以规定“向上的点数为奇数”、“向上的点数为偶数”共2个基本事件.,梳理 一般地,在建。

9、章末复习课,第一章 算法初步,学习目标 1.加深对算法思想的理解. 2.加强用程序框图清晰条理地表达算法的能力. 3.进一步体会由自然语言到程序框图再到程序的逐渐精确的过程.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 算法、程序框图、程序语言,(1)算法的概念:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的 、 计算序列,并且这样的步骤或序列能够解决 . (2)程序框图:程序框图由 组成,按照 用_ 将程序框连接起来.结构可分为 结构、 结构和 结构. (3)算法语句:基本算法语句。

10、章末复习课,第三章 概 率,学习目标 1.理解频率与概率的关系,会用随机模拟的方法用频率估计概率. 2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率. 3.能区分古典概型与几何概型,并能求相应概率.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.频率与概率 频率是概率的 ,是随机的,随着试验的不同而 ;概率是多数次的试验中 的稳定值,是一个 ,不要用一次或少数次试验中的频率来估计概率. 2.求较复杂概率的常用方法 (1)将所求事件转化为彼此 的事件的和; (2)先求其 事件的概率,然后再应用公式P(A。

11、3.2 古典概型,第三章 概 率,学习目标 1.理解古典概型及其概率计算公式. 2.会计算一些随机事件所含的基本事件数及事件发生的概率. 3.了解概率的一般加法公式及适用条件,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 古典概型,“在区间0,10上任取一个数,这个数恰为5的概率是多少?”这个概率模型属于古典概型吗?,不属于因为在区间0,10上任取一个数,其试验结果有无限个,故其基本事件有无限个,所以不是古典概型,答案,思考2,若一次试验的结果所包含的基本事件的个数为有限个,则该试验符合古典概型吗?,不一定符合还必须。

12、3.1.4 概率的加法公式,第三章 3.1 事件与概率,学习目标 1.理解互斥事件与对立事件的区别与联系. 2.会用互斥事件的概率加法公式求概率. 3.会用对立事件的概率公式求概率.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 事件的运算,一粒骰子掷一次,记事件C出现的点数为偶数,事件D出现的点数小于3,当事件C,D都发生时,掷出的点数是多少?事件C,D至少有一个发生时呢?,事件C,D都发生,即掷出的点数为偶数且小于3,故此时掷出的点数为2.事件C,D至少有一个发生,掷出的点数可以是1,2,4,6.,答案,事件的并 一般地,由事件A。

13、3.1.3 频率与概率,第三章 3.1 事件与概率,学习目标 1.在具体情景中,了解随机事件发生的频率的稳定性与概率的意义. 2.理解频率与概率的区别与联系.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点 频率与概率,同一个随机事件在相同条件下在每一次试验中发生的概率都一样吗?,概率是从数量上反映随机事件在一次试验中发生可能性的大小的一个量,是一个确定的数,是客观存在的,与每次试验无关;同一个随机事件在相同条件下在每一次试验中发生的概率都是一样的.,答案,(1)定义:在n次重复进行的试验中,事件A发生的频率 ,当n很。

14、2.3 变量的相关性,第二章 统 计,学习目标 1.了解变量间的相关关系,会画散点图. 2.根据散点图,能判断两个变量是否具有相关关系. 3.了解线性回归思想,会求回归直线的方程.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 变量间的相关关系,粮食产量与施肥量间的相关关系是正相关还是负相关?,在施肥不过量的情况下,施肥越多,粮食产量越高,所以是正相关.,答案,思考2,怎样判断一组数据是否具有线性相关关系?,画出散点图,若点大致分布在一条直线附近,就说明这两个变量具有线性相关关系,否则不具有线性相关关系.,答案,。

15、1.2.3 循环语句,第一章 1.2 基本算法语句,学习目标 1.正确理解循环语句的概念,并掌握其结构. 2.会应用循环语句编写程序. 3.经历对现实生活情境的探究,认识到应用计算机解决数学问题方便、简捷.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 循环语句的概念和适用范围,循环语句与条件语句有何关系?,循环语句中一定有条件语句,条件语句是循环语句的一部分,离开条件语句,循环语句无法循环,但条件语句可以脱离循环语句单独存在,可以不依赖循环语句独立地解决问题.,答案,思考2,编写程序时,什么情况下使用循环语句?,。

16、1.2.2 条件语句,第一章 1.2 基本算法语句,学习目标 1.了解条件语句和条件分支结构之间的对应关系. 2.理解条件语句的语法规则和用算法解决问题的一般步骤. 3.能够用条件语句编写条件分支结构的程序,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 条件语句的概念,处理 分支逻辑结构的算法语句,叫做条件语句,条件,知识点二 条件语句的类型、格式、功能,语句序列1,题型探究,例1 编写程序,输入两个不等的实数,由大到小输出这两个数,解答,类型一 条件语句的理解,程序如下:,(1)条件语句的执行顺序与算法框图中的选择结构的执行顺序。

17、第一章 1.1 算法与程序框图,1.1.1 算法的概念,学习目标 1.了解算法的含义. 2.了解算法的思想. 3.会用自然语言描述一些具体问题的算法,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 算法的概念,有一碗酱油,一碗醋和一个空碗现要把两碗盛的物品交换过来,试用自然语言表述你的操作办法,先把醋倒入空碗,再把酱油倒入原来盛醋的碗,最后把倒入空碗中的醋倒入原来盛酱油的碗,就完成了交换,答案,思考2,某笑话有这样一个问题:把大象装进冰箱总共分几步?答案是分三步第一步:把冰箱门打开;第二步:把大象装进去;第三步:。

18、章末复习课,第二章 统 计,学习目标 1.会根据不同的特点选择适当的抽样方法获得样本数据. 2.能利用图、表对样本数据进行整理分析,用样本和样本的数字特征估计总体. 3.能利用散点图对两个变量是否相关进行初步判断,能用回归直线方程进行预测,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 抽样方法,1.当总体容量较小,样本容量也较小时,可采用 . 2.当总体容量较大,样本容量较小时,可用 . 3.当总体容量较大,样本容量也较大时,可用 . 4.当总体由差异明显的几部分组成时,可用 .,抽签法,随机数法,系统抽样法,分层抽样法,知识。

19、2.1.1 简单随机抽样,第二章 2.1 随机抽样,学习目标 1.体会随机抽样的必要性和重要性. 2.理解随机抽样的目的和基本要求. 3.掌握简单随机抽样中的抽签法、随机数法的一般步骤.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 统计的基本概念,样本容量有单位吗?,没有.,答案,思考2,从高二(2)班60名学生中,抽取8名学生,调查视力状况.其中样本为“8名学生”,对否?,不对,样本应为“8名学生的视力状况”.,答案,1.总体:一般把所考察对象的某一数值指标的 构成的集合看作总体. 2.个体:构成总体的每一个元素作为个体. 3.样本。

20、1.3 中国古代数学中的算法案例,第一章 算法初步,学习目标 1.理解辗转相除法与更相减损术中的数学原理,并能根据这些原理进行算法分析. 2.理解割圆术中蕴含的数学原理. 3.了解秦九韶算法及利用它提高计算效率的本质. 4.对简单的案例能设计程序框图并写出算法程序.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 更相减损术,更相减损术的运算步骤 第一步,任意给定两个正整数,判断它们是否都是 .若是,用 约简;若不是,执行 . 第二步,以 的数减去 的数,接着把所得的差与 的数比较,并以大数减小数,继续这个操作,直到所得的。

【数学必修三】相关PPT文档
人教B版高中数学必修三课件:3.2 古典概型
标签 > 数学必修三[编号:16881]