人教版数学九年级下27.2.3相似三角形应用举例ppt课件

,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第1课时 解直角三角形的简单应用,1. 巩固解直角三角形相关知识. (重点) 2. 能从实际问题中构造直角三角形,从而把实际问 题转化为解直角三角形的问题,并能灵活选择三角函数解决问题(重点、难点),导入新课

人教版数学九年级下27.2.3相似三角形应用举例ppt课件Tag内容描述:

1、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第1课时 解直角三角形的简单应用,1. 巩固解直角三角形相关知识. (重点) 2. 能从实际问题中构造直角三角形,从而把实际问 题转化为解直角三角形的问题,并能灵活选择三角函数解决问题(重点、难点),导入新课,情境引入,高跟鞋深受很多女性的喜爱,但有时候,如果鞋跟太高,也有可能“喜剧”变“悲剧”.,美国人体工程学研究人员卡特 克雷加文调查发现,70以上的女性喜欢穿鞋跟高度为6至7cm左右的高跟鞋. 但专家认为穿6cm以上的高跟鞋,腿肚、脚背等处的肌肉。

2、 20202020- -20212021 学年九年级数学学年九年级数学下册下册尖子生同步培优题典【尖子生同步培优题典【人教人教版】版】 专题专题 27.5 相似三角形的应用相似三角形的应用 姓名:_ 班级:_ 得分:_ 注意事项: 本试卷满分 100 分,试题共 24 题,其中选择 10 道、填空 8 道。

3、,相似三角形的性质,相似三角形的性质 1 相似三角形的对应角相等,对应边成比例. 2 相似三角形对应高的比,对应中线的比与 对应角平分线的比都等于相似比. 3 相似三角形周长的比等于相似比, 面积比等于相似比的平方.,复习,练习:,ABC中,MNBC,ADBC, 则,M,N,E,议一议:,如图,四边形ABCD与四边形ABCD相似,且相似比为k,它们周长的比、面积的比与相似比有什么关系?,如果把四边形换成五边形,你刚才的结论是否仍然成立呢?,相似多边形的周长比等于 , 面积比等于 _.,相似比,相似比的平方,相似多边形的性质:,如图, ABC 是一块锐角三角形余料,边 BC12。

4、,27.2 相似三角形 27.2.1 相似三角形的判定 第1课时,1.理解平行线分线段成比例定理; 2.知道当ABC与DEF的相似比为k时,DEF与ABC的相似比为 .,即对应角相等对应边的比相等我们说ABC与DEF相似,记作 ABCDEF, ABC和DEF的相似比为k, DEF与ABC的相似比为 .,如果A=D, B=E, C=F,,判定两个三角形相似时,是否存在简便的判定方法呢?,问题 如图l1l2 l3,你能否发现在两直线a,b上截得的线段有什么关系?,通过计算可以得到:,由此可得到:,平行线分线段成比例定理:三条平行线截两条直线所得的对应线段的比相等.,说明: 定理的条件是“三条平行线。

5、27.2.1 相似三角形的判定 第2课时,1.理解定理“平行于三角形一边的直线与其他两边(或延长线)相交,所构成的三角形与原三角形相似”,“三边对应成比例的两个三角形相似”; 2.培养学生与他人交流、合作的意识.,1. 对应角_, 对应边 的两个三角形, 叫做相似三角形 .,相等,的比相等,2.相似三角形的_, 各对应边 .,对应角相等,的比相等,3.如何识别两三角形是否相似?, DEBC, ADEABC.,平行于三角形一边的直线和其他两边(或两边的延长线) 相交,所构成的三角形与原三角形相似.,思考:有没有其他简单的办法判断两个三角形相似?,是否有ABCABC?,A,B。

6、27.2.1 相似三角形的判定 第4课时,1.理解定理“两角对应相等,两三角形相似”; 2.能灵活地选择定理判定相似三角形.,这两个三角形的三个内角的大小有什么a关系?,三个内角对应相等的两个三角形一定相似吗?,三个内角对应相等.,观察你与老师的直角三角尺 , 相似吗?,画一个三角形,使三个角分别为60,45, 75 .,分别量出两个三角形三边的长度; 这两个三角形相似吗?,即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形_,相似,一定需三个角对应相等吗?,相似三角形的判别方法:如果一个三角形的两角分别与另一。

7、27.2.1 相似三角形的判定 第3课时,1.理解定理“两边对应成比例且夹角相等的两个三角形相似”; 2.能灵活地选择定理判定相似三角形.,判断两个三角形相似,你有哪些方法,方法1:通过定义(不常用),方法2:通过平行线.,方法3:三边对应成比例.,如果有一点E在边AC上,那么点E应该在什么位置才能使ADEABC相似呢?,所画如图所示,此时,,如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形一定相似吗?,A,B,C,E,D,证明:在ABC的边AB,AC(或它们的延长线) 上分别截取AD=AB,AE=AC,连结DE. A=A,这样,ADEAB。

8、第 1 页,共 17 页相似三角形的判定测试时间:100 分钟 总分: 100题号 一 二 三 四 总分得分一、选择题(本大题共 10 小题,共 30.0 分)1. 如图,在 中,点 P 在边 AB 上,则在下列四个条件中: ; ;= =; ,能满足2=与 相似的条件是 ( )A. B. C. D. 2. 下列 的正方形网格中,小正方形的边长均为 1,三角形的顶44点都在格点上,则在网格图中的三角形与 相似的是 ( )A. B. C. D. 3. 如图所示,每个小正方形的边长均为 1,则下列 A、B、C、D 四个图中的三角形阴影部分 与 相似的是 ( ) ( )A. B. C. D. 4. 如图,在 中, , ,点 D 在 AC 。

9、,27.2.1相似三角形的判定(1),、两个全等三角形一定相似吗?为什么?,、两个直角三角形一定相似吗?为什么? 两个等腰直角三角形呢?,、两个等腰三角形一定相似吗?为什么? 两个等边三角形呢?,相似比是多少?,回顾,它们是相似三角形吗?为什么?,回顾,在相似多边形中,最简单的就是相似三角形,在ABC和ABC中,如果,A=A, B=B, C=C,我们就说ABC与ABC相似, 记作:ABCABC.,k就是它们的相似比.,如果k=1,这两个三角形有怎样的关系?,如图,在ABC中,点D是边AB的中点,DE/BC,DE交AC于点E, ADE与ABC有什么关系?,思,考,?,直觉告诉我们, ADE与ABC相似,我们。

10、27.2.3 相似三角形应用举例,人教版 数学 九年级 下册,27.2相似三角形,1. 在前面,我们学过哪些判定三角形相似的方法?相似三角形的性质是什么? 2. 观察下列图片,你会利用相似三角形知识解决一些不能直接测量的物体(如塔高、河宽等)的长度或高度的问题吗?,怎样测量河宽?,世界上最宽的河 亚马逊河,世界上最高的树 红杉,旗杆,乐山大佛,1.能运用三角形相似的性质定理与判定定理进行简单的几何推理.,2.进一步了解数学建模思想,能够将实际问题转化为相似三角形的数学模型,能利用相似三角形的知识设计方案解决一些简单的实际问题,如高度。

11、 3.5 3.5 相似三角形的应用相似三角形的应用 第第3 3章章 图形的相似图形的相似 教学目标教学目标 1.1.会应用相似三角形的性质和判定解决实际问题会应用相似三角形的性质和判定解决实际问题 2.2.利用相似三角形解决实际问题中不能直接测量的物利用相似三角形解决实际问题中不能直接测量的物 体的长度的问题,让学生体会数学转化的思想。体的长度的问题,让学生体会数学转化的思想。 重点:重点:运用。

12、27.2 相似三角形,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,27.2.2 相似三角形的性质,1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点) 2. 理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点),学习目标,导入新课,复习引入,1. 相似三角形的判定方法有哪几种?,定义:对应边成比例,对应角相等的两个三角 形相似,平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似,三边成比例的两个三角形相似,两边成比例且夹角相等的两个三角形相似,两角分别相等的两个三角形。

13、27.2.2 相似三角形应用举例 第2课时,1、能应用相似三角形的有关知识解决一些实际问题; 2、进一步了解数学建模的思想,培养分析问题、解决问题的能力.,基本图形归纳,平行型,A型图,X型图,斜截型,解决实际应用问题的关键是根据题意画出图形,或在图中找出基本图形,便于解题.,眼睛在生活中具有非常重要的作用,有它可以欣赏美丽的大好河山,有它可以辨别是非黑白,有它可以传达你对同学们的友爱,但是你有没有想过人眼的视线在相似形中还有非常重要的作用.,【例】已知左、右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m,。

14、27.2.2 相似三角形应用举例 第1课时,1.能应用相似三角形的有关知识解决一些实际问题; 2.了解数学建模的思想,培养分析问题、解决问题的能力.,相似三角形的判定 (1)通过平行线. (2)三边对应成比例. (3)两边对应成比例且夹角相等 . (4)两角相等.,根据下列条件能否判定ABC与ABC相似? 为什么? (1) A=120,AB=7 ,AC=14 A=120,AB=3,AC=6 (2) AB=4 ,BC=6,AC=8 AB=12,BC=18,AC=21 (3) A=70,B=48, A=70, C=62,【例1】据史料记载,古希腊数学家、天文学家泰勒曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线。

15、相似三角形应用举例,会昌,安远,给我一个支点我可以撬起整个地球!,-阿基米德,如图,A、B两点被池塘隔开,在AB外任选一点C,连结AC、BCN测得AM=36m,MC=18m, MN28m则AB的长为_,如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高 m。,8,0.5m,1m,16m,?,胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。塔的个斜面正对东南西北四个方向,塔基呈正方形,每边长约多米。据考证,为建成大金字塔,共动用了万人花了年时间.原高米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低 。。

16、27.2.3 相似三角形的周长 与面积,1、理解相似三角形周长的比等于相似比,面积的比等于相似比的平方,相似三角形对应高的比也等于相似比;多边形的周长的比等于相似比,面积的比等于相似比的平方。 2、能应用相似三角形的有关性质解决相关问题.,(2)相似三角形有什么性质?根据是什么?相似多边形呢?,根据定义:,对应角相等, 对应边的比相等;,(3)相似三角形的对应边的比叫什么?,相似比,(4)ABC与ABC 的相似 比为k,则ABC 与ABC的相似比是多少?,(1)相似三角形有哪些判定方法?,如果两个三角形相似,它们的周长之间有什么关系? 两。

【人教版数学九年级下27.2.3】相关PPT文档
【人教版数学九年级下27.2.3】相关DOC文档
标签 > 人教版数学九年级下27.2.3相似三角形应用举例ppt课件[编号:172523]