23.2.3 关于原点对称的点的坐标,理解P与点P点关于原点对称时,它们的横纵坐标的关系; 2.掌握P(x,y)关于原点的对称点为P(-x,-y) 的运用,1.中心对称有何性质?,(1)关于中心对称的两个图形是全等形.,(2)关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.,
人教版数学九年级上25.1.1随机事件课件Tag内容描述:
1、23.2.3 关于原点对称的点的坐标,理解P与点P点关于原点对称时,它们的横纵坐标的关系; 2.掌握P(x,y)关于原点的对称点为P(-x,-y) 的运用,1.中心对称有何性质?,(1)关于中心对称的两个图形是全等形.,(2)关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.,2.在下列图形中,是中心对称图形的是( ),C,3.下列美丽的图案,既是轴对称图形又是中心对称图形 的个数是( ).,C,思考:,关于x轴对称的点的坐标具有怎样的特点?,(2,3),(2,-3),(-2,-2),(-2,2),在平面直角坐标系中,关于x轴对称的点的横坐标相。
2、21.2 降次解一元二次方程 21.2.1 配方法 第1课时,1.理解一元二次方程“降次”“二次”转化为“一次”的数学思想,并能应用它解决一些具体问题 2.运用开平方法解形如(x+m)2=n(n0)的方程.,在数学活动课上,老师拿来一张面积为962的长方形卡纸,要大家把它剪成形状、大小完全一样的6个图形.小强剪完后,发现它们恰好均为正方形,于是同桌小雨马上断定小强的正方形边长为4.你知道为什么吗?,【解析】设每一个小正方形的边长为,根据题意,得,根据平方根的意义,运用直接开平方求得一元二次方程 的解,这种方法叫做直接开平方法.,直接开平方。
3、24.1.2 垂直于弦的直径,1.理解圆的轴对称性及垂径定理的推证过程;能初步应用 垂径定理进行计算和证明; 2.进一步培养学生观察问题、分析问题和解决问题的能力; 3.通过圆的对称性,培养学生对数学的审美观,并激发学生 对数学的热爱,问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶,它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4 m,拱高(弧的中点到弦的距离)为7.2 m,你能求出赵州桥主桥拱的半径吗?,想一想:将一个圆沿着任一条直径对折,两侧半圆会有什么关系? 【解析】圆是。
4、23.2.2 中心对称图形,理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分; 2.理解关于中心对称的两个图形是全等图形; 3.能判断简单的几何图形是否是中心对称图形;了解中心对称图形的应用.,单击鼠标左键可使图形旋转,单击鼠标左键可使图形旋转,单击鼠标左键可使图形旋转,旋 转,以上图形都有哪些特点?通过这节课的学习,我们来认识和了解中心对称图形.,(2)圆,(4) 正方形,(1)线段,(3)平行四边形,A,B,将下面的图形绕O点旋转180,你有什么发现?,O,知 识 讲 解,把一个图形绕着某一个点旋转180,如果。
5、24.2 点、直线、圆和圆的位置关系 24.2.1 点和圆的位置关系,1.理解并掌握,设O的半径为r,点P到圆心的距离OP=d, 则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr及 其运用 2.理解不在同一直线上的三个点确定一个圆并掌握它的运用 3.了解三角形的外接圆和三角形外心的概念了解反证法的证明思想,爱好运动的小华、小强、小兵三人相邀举行一次掷飞镖比赛.他们把靶子钉在一面土墙上,规则是谁掷出的飞镖落点离红心越近,谁就胜.如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩最好?,A,B,C,如图,设O 的半径为r,A。
6、24.3 正多边形和圆,1.了解正多边形和圆的有关概念; 2.理解并掌握正多边形半径和边长、边心距、中心角 之间的关系,会应用多边形和圆的有关知识画多边形,你还能举出更多正多边形的例子吗?,正多边形: _,_的多边形叫做正多边形. 正n边形:如果一个正多边形有n条边,那么这个正多边形叫做正n边形.,三条边相等,三个角也相等(60度).,四条边都相等,四个角也相等(90度).,各边相等,各角也相等,菱形是正多边形吗?矩形是正多边形吗?为什么?,求证:正五边形的对角线相等,怎样找圆的内接正三角形? 怎样找圆的外切正三角形?,怎样找圆的内。
7、24.1.3 弧、弦、圆心角,1.掌握圆心角的概念. 2.掌握在同圆或等圆中,圆心角、弦、弧中有一个量 相等就可以推出其它的两个量对应相等,以及它们在 解题中的应用.,圆的对称性,圆的轴对称性(圆是轴对称 图形),垂径定理及其推论,圆的中心对称性?,?,(一)圆的中心对称性,(1)若将圆以圆心为旋转中心,旋转180,你能发现什么?,圆绕其圆心旋转180后能与原来图形重合.因此 .,圆是中心对称图形,对称中心是圆心,圆绕圆心旋转任意角度,都能够与原来的图形重合._.,(2)若旋转角度不是180,而是旋转任意角度,则旋转 过后的图形能与原图形重。
8、24.1.4 圆周角,1.理解圆周角的概念,掌握圆周角的定理的内容及简单 应用; 2.掌握圆周角的定理的三个推论及简单应用; 3.渗透由“特殊到一般”,由“一般到特殊”的数 学思想方法.,圆周角:_,并且角_. 圆心角: _ 的角.,顶点在圆上,两边都和圆相交,顶点在圆心,一条弧所对的圆周角等于它所对的圆心角的一半.,圆周角定理,分类讨论,完全归纳法,定理一条弧所对的圆周角等于它所对的圆心角的一半. 也可以理解为:一条弧所对的圆心角是它所对的圆周角 的二倍;圆周角的度数等于它所对的弧的度数的一半.,弧相等,圆周角是否相等?反过来呢? 什么。
9、25.3 用频率估计概率,理解每次试验可能结果不是有限个,或各种可能结果 发生的可能性不相等时,用频率估计概率的方法; 2.能应用模拟实验求概率及其应用,1.什么叫概率?,事件发生的可能性的大小叫这一事件发生的概率.,2.概率的计算公式:,若事件发生的所有可能结果总数为n,事件发生的可能结果数为m,则(),3.估计概率,在实际生活中,我们常用频率来估计概率,在大量重复的实验中发现频率接近于哪个数,把这个数作为概率,1.如果有人买了彩票,一定希望知道中奖的概率有多大那么怎样来估计中奖的概率呢?,2.出门旅行的人希望知道乘坐哪一。
10、21.2.3 因式分解法,1.了解因式分解法解一元二次方程的概念,并会用分解因式法解某些一元二次方程. 2.通过因式分解法解一元二次方程的学习,树立转化的思想.,1.我们已经学过了几种解一元二次方程的方法?,2.什么叫因式分解?,把一个多项式分解成几个整式乘积的形式叫做因式分解.,直接开平方法,配方法,x2=a (a0),(x+m)2=n (n0),公式法,认真思考下面大屏幕出示的问题,列出一元二次方程并尽可能用多种方法求解.,一个数的平方与这个数的3倍有可能相等吗?如果相等, 这个数是几?你是怎样求出来的?,小颖,小明,小亮都设这个数为x,根据题意得:,小。
11、23.1 图形的旋转,第二十三章 旋转,1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题 2.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题,把一个图形绕着某一定点O 转动一定角度的图形变换叫做_这个定点O 叫_,转动的角叫做_,如果图形上的点P经过旋转变为点P,那么点P和P叫做这个旋转的_.,旋转,旋转中心,旋转角,对应点,点击播放动画展示,O,P,P,请大家在硬纸板上,挖一个三角形洞,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸先在。
12、21.2.2 公式法,1.理解一元二次方程求根公式的推导过程; 2.了解公式法的概念; 3.会熟练应用公式法解一元二次方程,(4)配方、用直接开平方法解方程.(x+ )2= -q,x2+px+( )2= -q+( )2,2、用配方法解一元二次方程的步骤: (1)把原方程化成 x2+px+q=0的形式; (2)移项整理 得 x2+px=-q; (3)在方程 x2+px=-q 的两边同加上一次项系数p的一半的平方;,1、请用配方法解一元二次方程2x2+4x+1=0,用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a0),解析:把方程两边都除以a,即 ( x + )2 =,移项,得 x2 + x= -,配方,得 x2 + x+( )2=- +( )2,。
13、第二十四章 圆 24.1 圆 24.1.1 圆,1.在探索过程中认识圆,理解圆的本质属性. 2.了解弦,弧,半圆,优弧,劣弧,同心圆,等圆,等弧等 与圆有关的概念,理解概念之间的区别和联系. 3.让学生在动手实践中探索并初步了解点和圆的位置关系.,圆是生活中常见的图形,许多物体都给我们以圆的形象.,观察车轮,你发现了什么?,一石激起千层浪,乐在其中,圆的世界,奥运五环,福建土楼,一、 创设情境 引入新课,祥 子,小憩片刻,圆的世界,如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆,r,固定的端点O叫做圆心,。
14、25.1.2 概率,1在具体情境中了解概率的意义. 2会求简单问题中某一事件的概率.,在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力这句话有一个非同寻常的来历1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰.一时间,德军的“潜艇战”搞得盟军焦头烂额.,1名数学家10个师,为此,有位美国海军将领专门去请教了一位数学家,数学家们运用概率论分析后认为:舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100。
15、第 1 页,共 5 页25.1 随机事件与概率同步练习一、选择题1. 书架上有数学书 2 本,英语书 3 本,语文书 5 本,从中任意抽取一本是数学书的概率是 ( )A. B. C. D. 110 35 310 152. 下列事件中,是必然事件的是 ( )A. 明天太阳从东方升起B. 射击运动员射击一次,命中靶心C. 随意翻到一本书的某页,这页的页码是奇数D. 经过有交通信号灯的路口,遇到红灯3. 某个密码锁的密码由三个数字组成,每个数字都是 这十个数字中的一个,只09有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开 如果仅忘记了锁.设密码的最后那个数字,那么一次。
16、第 1 页 共 7 页(人教版)九年级上 第二十五章 25.1 随机事件与概率 课时练 学校: 姓名: 班级: 考号: 评卷人 得分一、选择题1. 下列说法错误的是 ( )A. 必然发生的事件发生的概率为 1 B. 不可能发生的事件发生的概率为 0 C. 随机事件发生的概率大于 0 且小于 1 D. 不确定事件发生的概率为 0 2. 下列事件为必然事件的是 ( )A. 经过有交通信号灯的路口,遇到红灯 B. 明天一定会下雨 C. 抛出的篮球会下落 D. 任意买一张电影票 ,座位号是 2 的倍数 3. 一个不透明的盒子中装有 3 个红球、2 个黄球和 1 个绿球 ,这些球除了颜色外无其他差别.。
17、31.1 确定事件和随机事件,第三十一章 随机事件的概率,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.对必然事件,不可能事件和随机事件作出准确判断. 2.归纳出必然事件、不可能事件和随机事件的特点.(重点),导入新课,问题引入,一休得罪了幕府将军,将军决定处罚一休,幸得安国寺长老和百姓们的求情,将军终于同意让一休用自己的聪明才智来决定自己的命运. 1.方法是将军写下两张签,一张罚,一张免,让一休抽签,抽中罚则罚,抽中免则免; 2.将军一心想处罚一休,将军会在写签时怎么写呢?原来将军在两张签上都写上了“罚”.一休不论抽。
18、人教版数学九年级上册 第 五 章 概 率 初 步 5.1随机事件 第 五 章 概 率 初 步 第 1 课 时 主讲人:小XX 前 言 学习目标学习目标 1.了解随机事件必然事件不可能事件的基本概念和特点。 2.能根据随机事件必然事件不可能事。
19、25.1 随机事件与概率,第二十五章 概率初步,学练优九年级数学(RJ)教学课件,25.1.1 随机事件,导入新课,讲授新课,当堂练习,课堂小结,1.会对必然事件,不可能事件和随机事件作出准确判断.(重点) 2.归纳出必然事件、不可能事件和随机事件的特点. (难点) 3.知道事件发生的可能性是有大小的.,学习目标,导入新课,视频引入,以上三段视频中描述的事件一定会发生吗?,讲授新课,互动探究,活动1 掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,在骰子向上的一面:,(1)可能出现哪些点数?,(2)出现的点。
20、2 25 5.1 .1 随机事件与概率随机事件与概率 25.1 25.1 随机事件与随机事件与概率概率 25.1.1 25.1.1 随机事件随机事件 人教版人教版 数学数学 九九年级年级 上册上册 2 25 5.1 .1 随机事件与概率随机。