第2课时,12.2 三角形全等的判定,1三角形全等的“边角边”的条件 2经历探索三角形全等条件的过程,体会利用操作、归纳获 得数学结论的过程 3掌握三角形全等的“SS”条件,了解三角形的稳定性 4能运用“SS”证明简单的三角形全等问题,还记得作一个角等于已知角的方法吗?,做一做:先任意画出ABC.再
人教版数学八年级上13.1轴对称第1课时课件Tag内容描述:
1、第2课时,12.2 三角形全等的判定,1三角形全等的“边角边”的条件 2经历探索三角形全等条件的过程,体会利用操作、归纳获 得数学结论的过程 3掌握三角形全等的“SS”条件,了解三角形的稳定性 4能运用“SS”证明简单的三角形全等问题,还记得作一个角等于已知角的方法吗?,做一做:先任意画出ABC.再画一个ABC, 使AB=AB, AC=AC,A=A.(即有两边和它们 的夹角相等).把画好的ABC剪下,放到ABC上, 它们全等吗?,画法:,2. 在射线AM上截取AB=AB,3. 在射线AN上截取AC=AC,1. 画MAN=A,4. 连接BC,ABC就是所求的三角形.,三角形全等判定二: 两边和它们的夹。
2、第4课时,12.2 三角形全等的判定,1经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程; 2.掌握直角三角形全等的条件,并能运用其解决一些实际 问题; 3.在探索直角三角形全等条件及其运用的过程中,能够进 行有条理的思考并进行简单的推理,我们已经学过判定全等三角形的方法有哪些?,1、边边边(SSS),3、角边角(ASA),4、角角边(AAS),2、边角边(SAS),如图,AB BE于B,DEBE于E,,(1)若 A= D,AB=DE, 则 ABC与 DEF (填“全等”或“不全等”)根据 (用简写法).,全等,ASA,(2)若 A= D,BC=EF,则 ABC与 DEF (填 。
3、15.1.2 分式的基本性质 (第2课时),2、理解通分的概念和理论根据,会用分式的基本性质将分式通分 .,1、理解约分的概念和理论根据,会用分式的基本性质将分式约分 .,分数的约分与通分,1、约分: 约去分子与分母的最大公约数,化为最简分数. 2、通分: 先找分子与分母的最简公分母,再分子与分母同乘最简公分母,计算即可.,这一过程实际上是将分式中分子与分母的公因式约去.,把分式分子、分母的公因式约去,这种变形叫分式的约分.,分式约分的依据是什么?,分式的基本性质,观察下列化简过程,你能发现什么?,约分的步骤(1)约去系数的最大。
4、第1课时,13.3 等腰三角形 13.3.1 等腰三角形,1、了解等腰三角形的概念,掌握 等腰三角形的性质; 2、运用等腰三角形的概念 及性质 解决相关问题.,1、下列图形不一定是轴对称图形的是( ) A.圆 B.长方形 C.线段 D.三角形 2、怎样的三角形是轴对称图形? 3、有两边相等的三角形叫 ,相等的 两边叫 ,另一边叫 ,两腰的夹角叫 , 腰和底边的夹角叫 .,D,等腰三角形,等腰三角形,腰,底,顶角,底角,有两条边相等的三角形 叫做等腰三角形.,等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.,底边,。
5、15.2.2 分式的加减 (第2课时),2.能运用分式的运算解决实际问题.,1.掌握分式混合运算的顺序,能熟练地进行分式的混合运算.,1.分式的加减法则:,2.分式的乘除:,例1 在如图的电路中,已测定CAD支路的电阻是R1欧姆,又知 CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知 总电阻R与R1,R2满足关系式 ,试用含有R1的式 子表示总电阻R.,例2.计算:,【解析】,3.用两种方法计算:,=,解:(按运算顺序) 原式,=,(利用乘法分配律)原式,根据规划设计,某市工程队准备在开发区修建一条长 1 120m的盲道,由于采用新的施工方式,实际每天修建盲道 的长。
6、15.3 分式方程 (第2课时),2.能根据实际问题的意义检验所得的结果是否合理.,1.会列出分式方程解决简单的实际问题.,甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?,解:设甲每小时做x个零件,则乙每小时做(x6)个零件, 依题意得:,经检验x=18是原分式方程的解,且符合题意.,答:甲每小时做18个,乙每小时12个.,请审题分析题意设元,我们所列的是一个分式方程,这是分式方程的应用,由x18得x6=12,解得:,列分式方程解应用题的一般步骤,1.审:分析题。
7、第1课时,12.2 三角形全等的判定,1会用“边边边”判定三角形全等 2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,AB=DE BC=EF CA=FD A=D B=E C=F,1、什么叫全等三角形?,能够重合的两个三角形叫全等三角形.,2、全等三角形有什么性质?,问题一:根据上面的结论,两个三角形全等,它们的三个角、三条边分别对应相等,那么反过来,如果两个三角形中上述六个元素对应相等,是否一定全等?,问题二:两个三角形全等,是否一定需要六个条件呢?如果只满足上述一部分条件,是否我们也能说明他们全等?,任意画ABC,使AB=3cm。
8、第2课时,14.2.2 完全平方公式,1.理解添括号法则. 2. 利用添括号法则灵活应用完全平方公式 3.进一步熟悉乘法公式,体会公式中字母的含义,请同学们完成下列运算并回忆去括号法则 (1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c),【解析】(1)4+(5+2)=4+5+2=11(2)4-(5+2)=4-5-2=-3 或:4-(5+2)=4-7=-3(3)a+(b+c)=a+b+c (4)a-(b-c)=a-b+c,去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符号;如果括号前是负号,去掉括号后,括号里的各项都改变符号,左边没括号,右边有括号,也。
9、第2课时,14.1.4 整式的乘法,1.探索并了解多项式与多项式相乘的法则,并运用它们进行运算 2.让学生主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的能力.,计算:1.单项式乘以单项式,2.单项式乘以多项式,问题:如图,为了扩大街心花园的绿地面积,把一块原长a米,宽m米的长方形绿地,增长了b米,加宽了n米.你能用几种方法求出扩大后的绿地的面积?,扩大后的绿地可以看成长为(a+b)米,宽为(m+n)米的长方形,所以这块绿地的面积为(a+b)(m+n)米2.,扩大后的绿地还可以看成由四个小长方形组成,所以。
10、13.2 画轴对称图形,理解图形轴对称变换的性质,教学目标,掌握在平面直角坐标系中作出一个图形的轴对称图形的方法,理解在平面直角坐标系中,已知点关于 x 轴或 y 轴对称的点的坐标的变化规律,能按要求画出一个平面图形关于某直线对称的图形,画轴对称图形,在平面直角坐标系中关于 x 轴或 y 轴对称的点的变化规律和作出与一个图形关于 x 轴或 y 轴对称的图形,教学重点,教学难点,较复杂图形轴对称的画法,这些图案有什么共同特点?,都是轴对称图形,你能根据这一部分还原整个图案吗?,关于对称轴对称即可,那么问题来了,怎么画轴对称图形呢?,在。
11、15.3 分式方程 (第1课时),2.掌握分式方程的解法,会解可化为一元一次方程的分式方程.,1.理解分式方程的概念和分式方程产生无解的原因.,一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?,解:设江水的流速为 v 千米/时,根据题意,得,分母中含未知数的方程叫做 ?,像这样分母中含有未知数的方程叫做分式方程.,以前学过的分母里不含有未知数的方程叫做整式方程.,下列方程中,哪些是分式方程?哪些整式方程?,整式方程,分式方程,解得:,下面我们一。
12、1,15.2.2 分式的加减 (第1课时),2,1.掌握同分母的分式加减法的法则,能熟练地进行同分母的分式加减法的运算. 2.会把异分母的分式通分,转化成同分母的分式相加减. 3.在学习过程中体会类比思想的运用,学会知识的迁移.,3,问题1:甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?,答:甲工程队一天完成这项工程的_, 乙工程队一天完成这项工程的_ , 两队共同工作一天完成这项工程的 _.,4,问题2:2010年,2011年,2012年某地的森林面积(单位:公顷)分别是S1,S2,S3,2012年与2011。
13、第1课时,14.1.4 整式的乘法,1.探索并了解单项式与单项式、单项式与多项式相乘的法则,并运用它们进行运算 2.让学生主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的能力.,(3)(ab)n=anbn(n为正整数) 即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,1.幂的运算性质:,(1)aman=am+n(m,n都是正整数) 即同底数幂相乘,底数不变,指数相加.,(2)(am)n=amn(m,n都是正整数) 即幂的乘方,底数不变,指数相乘,2.填空:,a4,26,a9,28,1,光的速度约为3105千米/秒,太阳光照。
14、第1课时,14.2.2 完全平方公式,1.经历完全平方公式的推导过程、几何解释,进一步 发展符号感和推理能力 2.理解完全平方公式的结构特征并能灵活应用公式进 行计算,a2,b2,一位老人非常喜欢孩子每当有孩子到他家做客时,老人都要拿出糖果招待他们来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘, (1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖? (2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?,(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖? (4)。
15、第1课时,14.4.2 公式法,1.运用完全平方公式分解因式,能说出完全平方公式的特点. 2.会用提公因式法与公式法分解因式 3.培养学生的观察、联想能力,进一步了解换元的思想方法, 并能说出提公因式法在这类因式分解中的作用.,1.什么是因式分解?,把一个多项式分解成几个 整式的积的形式.,如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?,2.什么是提公因式法分解因式?,在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.,3.判断下列各式是因式分解的是 . (。
16、,导入新课,讲授新课,当堂练习,课堂小结,19.4 坐标与图形的变化,第十九章 平面直角坐标系,第2课时 图形的轴对称、放缩与坐标变化,学习目标,1.在同一直角坐标系内,感受坐标变化而使图形对称、扩大和缩小的过程,并能得出图形对称、扩大和缩小的规律.(重点、难点) 2.通过探索图形上点的坐标变化与图形变换之间的关系,进一步体会数形结合的数学思想.,沿着某一直线对折,直线两旁的部分能够完全重合的图形就是轴对称图形;这条直线称为对称轴.,a称为点P的横坐标, b称为点P的纵坐标.,导入新课,复习引入,a,b,ABC与A1B1C1关于x轴对称,讲授新课。
17、1课时作业(二十五)3.3 第 1 课时 轴对称的坐标表示 一、选择题12018湘潭如图 K251,点 A 的坐标为(1,2),点 A 关于 y 轴的对称点的坐标为( )图 K251A(1,2) B(1,2)C(1,2) D(2,1)2如图 K252,在 33 的正方形网格中有四个格点 A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )图 K252A点 A B点 B C点 C D点 D二、填空题3在平面直角坐标系中,点(1,2)和(1,2)的对称轴是_4在平面直角坐标系中,如果点 A 沿 x 轴翻折后能够与点 B(1,2)重合,那么A。
18、轴对称的基本性质第1课时,实验一:,想一想:(1)点A与点B关于直线m有什么样的位置关系?,(2)连结AB,请同学们用量角器、刻度尺度量并判断线段AB与 直线m有什么关系?,A,B,m,如图,将一张矩形纸对折,然后用笔尖扎出“14这个数字,将纸打开后铺平 (1)上图中,两个“14有什么关系? (2)在上面扎字的过程中,点E与点E重合,点F与点F 重合。设折痕所在直线为L,连接;点E与点E 。
19、第3章 图形与坐标,3.3 轴对称和平移的坐标表示,第1课时 轴对称的坐标表示,目标突破,总结反思,第3章 图形与坐标,知识目标,3.3 轴对称和平移的坐标表示,知识目标,1通过轴对称图形的特点,结合平面直角坐标系中点的规律,探索出关于x轴、y轴对称的点的坐标规律并应用于实际 2结合几何图形,利用点关于x轴、y轴对称点的规律,作关于x轴、y轴对称的图形,目标突破,目标一 理解关于坐标轴对称的两点的坐标特征并会应用,例1 教材补充例题 已知点P(2,3)关于x轴对称的点是P1,点P1关于y轴对称的点是P2,则点P2的坐标是( ) A(2,3) B(2,3) C(2,3) 。
20、第2课时,13.1 轴对称,1.了解轴对称及线段垂直平分线的性质和判定. 2.会应用线段垂直平分线的性质和判定解题.,如果一个图形沿着一条直线 ,两侧的图 形能够 ,这个图形就是轴对称图形.,折痕所在的这条直线叫做_.,对称轴,对折,完全重合,把一个图形沿着某一条直线 ,如果它能够 ,那么就说这两个图形关于这条直 线对称,这条直线叫做对称轴,折叠后重合的点是对应点, 叫做 .,A,A,B,C,B,C,折叠,与另一个图形重合,对称点,已知图中的两个三角形关于直线m对称,请说出图中的哪些点可以重合?,C的对称点是_,_的对称点是E,D,A的对称点是F,能重合的点叫_。