4.5 三角形的中位线,C,B,B、C两点被池塘隔开如何测量B、C两点距离?,想一想,A,B,C,D,E,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB,AC的中点D、E,若测出DE的长,就能求出池塘BC的长,你知道为什么吗?,想一想,A,B,C,D,E,合作学习,剪一刀,
浙教版数学八年级上册1.4全等三角形课件1Tag内容描述:
1、4.5 三角形的中位线,C,B,B、C两点被池塘隔开如何测量B、C两点距离?,想一想,A,B,C,D,E,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB,AC的中点D、E,若测出DE的长,就能求出池塘BC的长,你知道为什么吗?,想一想,A,B,C,D,E,合作学习,剪一刀,将一张三角形纸片剪成 一张三角形纸片和一张梯形纸片.,(1)要保证剪成一张三角形纸片和一张梯形纸片,剪痕的位置有什么要求?,(2)若要使ADE与梯形DBCE能拼成平行四边形,剪痕的位置有什么要求?,(3)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形作怎样的。
2、11.3 探索三角形全等的条件(1)一、选择1能判断AB CABC的条件是 ( )AAB=AB,AC=AC, C= C BAB=AB , A= A,BC=BCCAC=AC, A= A,BC=BC DAC=AC, C=C ,BC=BC2(2014贵阳) 如图,点 A, D, C, F 在同一条直线上,AB=DE,BC=EF,要使ABCDEF,还需要添加的一个条件是 ( )A BCA= F B B= E CBC EF D A= EDF3如图,AB , CD 交于点 O,AO=CO,BO=DO,则在以下结论中:。
3、,三角形,教学课件,湘教版八年级上册,01 新课导入,目录,03 典型例题,02 新知探究,04 拓展提高,05 课堂小结,06 作业布置,01 新课导入,新课导入,对于生活中的这些图形,同学们能找出其中三角形吗?又是怎样找出来的呢?下面我们就来学习有关三角形的数学知识。,02 新知探究,新知探究,三角形的概念,观察下面三角形的形成过程,说一说什么叫三角形?,定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.,A,B,C,三角形中有几条线段?有几个角?,有三条线段,三个角. 边:线段AB,BC,CA是三角形的边, 顶点:点A,B,C是三角形。
4、2.6 直角三角形(1),锐角三角形 直角三角形 钝角三角形,有一个角是钝角.,三角形按角的分类,三个角都是锐角.,有一个角是直角.,你能举出生活中用到直角三角形的例子吗?,探究新知,三角形,直角三角形:,有一个内角是直角的三角形.,直角三角形表示:,RtABC,直角边,直角边,斜边,a,b,Rt,探究归纳,直角三角形的内角有什么特点?,直角三角形有一个内角是直角,另外两个锐角互余.,说一说,直角三角形的两个锐角互余.,直角三角形的性质:,判断三角形ABC是否直角三角形:,1. A:B:C=1:2:3,2. A:B:C=2:3:5,3. A:B:C=3:4:5,4. A:B:C=1:1:2,小试身手,如图,CD。
5、12.1 全等三角形基础闯关全练拓展训练1.如图,已知ABCDCB,AB=10,A=60,ABC=80,那么下列结论中错误的是( )A.D=60 B.DBC=40C.AC=DB D.BE=102.如图所示,ABCEDF,DF=BC,AB=ED,AE=20,AF=5,则 AC 的长为 . 3.如图,CDAB 于点 D,BEAC 于点 E,ABEACD,C=42,AB=9,AD=6,G 为 AB 延长线上一点.(1)求EBG 的度数;(2)求 CE 的长.4.如图,ABFCDE,B 和D 是对应角,AF 和 CE 是对应边.(1)写出ABF 和CDE 的其他对应角和对应边;(2)若B=30,DCF=40,求EFC 的度数;(3)若 BD=10,EF=2,求 BF 的长.能力提升全练拓展训练1.已知ABCDEF,AB=2,AC=4,若DEF 的周长为偶数,则 EF 的。
6、2.5 全等三角形同步检测一、选择题 1.如图,已知 AB=AD,1=2=50,D=100,那么ACB 的度数为( ) A. 30 B. 40 C. 50 D. 602.如图,已知ABC 的六个元素,则下面甲、乙、丙三个三角形中和ABC 全等的图形是( )A. 甲和乙 B. 乙和丙 C. 只有乙 D. 只有丙3.已知ABCDEF,且A=100,E=35,则F=( ) A. 35 B. 45 C. 55 D. 704.如图,点 B、E 在线段 CD 上,若C=D,则添加下列条件,不一定能使ABCEFD 的是( )A. BC=FD,AC=ED B. A=DEF,AC=EDC. AC=ED,AB=EF D. ABC=EFD,BC=FD5.如图,在正方形 ABCD 中,AB=2,延长 BC 到点 E,使 CE=1,连接 DE。
7、第1课时,12.2 三角形全等的判定,1会用“边边边”判定三角形全等 2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,AB=DE BC=EF CA=FD A=D B=E C=F,1、什么叫全等三角形?,能够重合的两个三角形叫全等三角形.,2、全等三角形有什么性质?,问题一:根据上面的结论,两个三角形全等,它们的三个角、三条边分别对应相等,那么反过来,如果两个三角形中上述六个元素对应相等,是否一定全等?,问题二:两个三角形全等,是否一定需要六个条件呢?如果只满足上述一部分条件,是否我们也能说明他们全等?,任意画ABC,使AB=3cm。
8、4.5三角形的中位线,A,B,C,D,E,两个点B、C被池塘隔开,只要在平地上选一点A,再分别找出线段AB,AC的中点D、E,并测出DE的长,就能求出BC的长,你知道为什么吗?,生活中的数学,合作学习,剪一刀,将一张三角形纸片剪成一张三角形和一张梯形纸片.,(1) 如果要求剪得的两个图形拼成一个平行四边形,剪痕的位置有什么要求?,A,B,C,D,E,概念学习,F,三角形有三条中位线,连结三角形两边中点的线段叫做 三角形的中位线.,合作学习,剪一刀,将一张三角形纸片剪成一张三角形和一张梯形纸片.,(1) 如果要求剪得的两个图形拼成一个平行四边形,剪痕的位置有什么。
9、1.1 全等三角形,结论:这两个图形完全重合,请观察,并说出你看到的现象,能够完全重合的两个平面图形,叫做全等形.,这两个五角星就是全等五角星,这两个正方形就是全等正方形,全等图形必须形状、大小完全相同,形状 相同,大小 相同,及时反馈,请观察,并说出你看到的现象,结论:这两个三角形重合,特别地,能够完全重合的两个三角形,叫全等三角形.,A,B,C,D,E,。
10、期末专项复习三角形、全等三角形一、选择题(每小题3分,共30分)1.下列说法中正确的是( )A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角2.三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定3.一个多边形的内角和与外角和相等,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形4.将一副直角三角板,按如图所示叠放在一起,则图中的度数是( )A.B.C.D.5.如图,在方格纸中。
11、12.1 全等三角形,第十二章 全等三角形,导入新课,讲授新课,当堂练习,课堂小结,八年级数学上(RJ)教学课件,情境引入,学习目标,1.理解并掌握全等三角形的概念及其基本性质. (重点) 2.能找准全等三角形的对应边,理解全等三角形的对应角相等.(难点) 3.能进行简单的推理和计算,并解决一些实际问题.(难点),导入新课,观察与思考,下列各组图形的形状与大小有什么特点?,(1),(2),(3),(4),(5),讲授新课,问题1:观察思考:每组中的两个图形有什么特点?, ,问题2:观察思考:每组中的两个图形有什么特点?, ,归纳总结,全等图形定义。
12、第11章 全等三角形(复习),知识回顾-全等三角形,1、定义-,能够完全重合的两个三角形叫做全等三角形。,2、性质-,全等三角形的对应边、对应角相等。,3、一个图形经过平移、翻折、旋转后,位置发生了变化, 但是它的形状和大小并没有改变。即:平移、翻折、 旋转前后的两个图形全等。,寻找对应元素的规律:,知识回顾-全等三角形,1、有公共边的,公共边是对应边; 2、有公共角的,公共角是对应角; 3、有对顶角的,对顶角是对应角; 4、两个全等三角形最大的边是对应边,最小的边是对应边; 5、两个全等三角形最大的角是对应角,最小的角是对。
13、期末复习(二) 全等三角形01 本章结构图全 等 三角 形 全 等 形 、全 等 三 角 形 的 概 念全 等 三 角形 的 判 定边 边 边 (SSS)边 角 边 (SAS)角 边 角 (ASA)角 角 边 (AAS)斜 边 、直 角 边 (HL, 只 适 用 Rt ))全 等 三 角 形 的 性 质 对 应 边 相 等对 应 角 相 等 )角 平 分 线 的 性 质 与 判 定 )02 重难点突破重难点 1 全等三角形的性质与判定【例 1】 (大连中考)如图,点 A、B、C 、D 在一条直线上 ,AB CD,AE BF ,CEDF.求证:AEBF.证明:AEBF ,AFBD.CEDF, DACE.ABCD ,AB BCCDBC,即 ACBD.在ACE 和BDF 中, A F。
14、认识三角形(2),1.1,A,D,C,B,BAD =CAD,将ABC的两边AB、AC重合,得到折痕AD,量一量BAD 和CAD 有什么关系?,三角形的角平分线定义,在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。,C,如图,BAC的平分线交BC于点D,线段AD就是ABC的一条角平分线。,几何语言:,(1)三角形的角平分线是一条线段;,(2)三角形的角平分线仍具有角平分线的基本性质。,注意,AD是BAC的角平分线,BADCAD=,BAC,动手试一试,任意画一个三角形, 然后利用量角器画 出这个三角形的三 条角平分线,你有 什么发现?,。
15、1.1 认识三角形,1、什么是角平分线? 2、如何画一个角的平分线?所用的工具是什么?,三角形的角平分线定义,在三角形中,一个内角的角平分线与 它的对边相交,这个角的顶点与交点 之间的线段叫做三角形的角平分线。,A,C,D,B,如图,BAC的平分线交BC 于点D,线段AD就是 ABC的一条角平分线。,在三角形中,一个内角的角平分线与 它的对边相交,这个角的顶点与交点 之间的线段叫做三角形的角平分线。,A,C,D,B,如图,三角形ABC的角平分线可以画三条,它们交于一点。,A,D,C,B,任意画一个三角形,用刻度尺 画BC的中点D,连接AD。,4、怎样画三角形的。
16、12.1 全等三角形,第十二章 全等三角形,1知道什么是全等形、全等三角形及全等三角形的 对应元素; 2知道全等三角形的性质,能用符号正确地表示两 个三角形全等; 3能熟练找出两个全等三角形的对应角、对应边,根据刚才的图形回答:,一个图形经过平移,翻折,旋转后,位置变化了,但 和都没有改变,即平移,翻折,旋转前 后的图形_.,能够完全重合的两个图形叫做全等形.,形状,大小,全等,你还能说出生活中的其它一些全等图形吗?,能够完全重合的两个三角形叫做全等三角形.,如果ABC与DEF会互相重合,顶点A与顶点_重合, 顶点B与顶点_重合,顶点C与顶点_。
17、1.1 认识三角形(1),那么,怎样的图形叫做三角形呢?,1:三角形定义:,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,你能画一个三角形吗?,A,B,C,三角形用符号“”表示,如图顶点 是A,B,C的三角形,2:三角形表示方法,(1):记作“ABC”,(2):读作“三角形ABC”,A,B,C,BC 、 AC 、AB,内角:,A、B、 C,点A、 点 B、 点 C,a,c,b,或a、 b、 c,三边:,顶点:,3:三角形的有关概念,同学们都掌握了吗?咱们做个练习试试吧!,A,B,C,D,1:图中有_个三角形,并写出图中各三角形.,3,2:图中有_个三角形,并写出图中各三角形.,6,练一练,你会数。
18、1.4 全等三角形A 组1有下列说法:用同一张底片冲洗出来的两张 1 寸照片是全等图形;所有的正方形是全等图形;全等图形的周长相等;面积相等的图形一定是全等图形其中正确的是( C)A B C D 2如图,已知ABCCDA,AB 4,BC 5,AC6,则 AD 的长为(B)A 4 B 5 C 6 D 不确定,(第 2 题) ,(第 3 题)3如图,ABCEFD ,则下列说法错误的是(D)A FCBD B EF 平行且等于 ABC AC 平行且等于 DE D CDED4边长都为整数的ABCDEF,AB 2,BC 4若DEF 的周长为偶数,则 DF 的长为(B)A 3 B 4 C 5 D 3 或 4 或 5(第 5 题)5如图,点 E,F 在线段 BC 上,ABFDCE,AF 与 DE。
19、1.4 全等三角形,1. 观察: 下列各组图形, 它们能重合吗?,(1),(2),(3),(4),第1组,第2组,2. 能够重合的两个图形叫做全等图形.,能够重合的两个三角形叫做全等三角形.,3. 全等三角形的表示方法,全等三角形的几个有关概念,1. 两个全等三角形重合时, 能够互相重合的顶点叫做,全等三角形的对应顶点.,互相重合的边叫做全等三角形,的对应边.,互相重合的角叫做全等三角形的对应角.,注意,“全等”符号:,如上图:ABCDEF,通常把对应顶点的字母写在对应位置上,练习,1. 如图已知: AOBCOD.,A,B,C,D,O,(1)对应点是:, ,.,(2) 对应边是:, , .,(3) 对应角是:, 。
20、全等三角形,1.4,上述图形中形状、大小相同相同吗?,火眼金睛辨图形,活动一:找出下列图形中形状、大小相同的图形。,F,F,F,F,a,d,c,b,h,g,f,e,活动2: 你能再举一些生活中形状、大小相同的图形吗?,你说我说共交流,同一张底片洗出的照片,同一张底片洗出的两张照片,得到的两个图 形大小、形状相同。,能够完全重合的两个图形称为全等图形,两张纸重合后剪纸,得到的两个图形大小、 形状相同。,A,B,C,D,E,F,各图中的两个三角形是全等形吗?,运用心得试一试,解后思:,平移、翻折、旋转前后的两个三角形的位置改变,但形状、大小不变。,1、能够完。