鲁教版数学九年级下册5.1圆优秀课件

4.3 圆周角(2),九年级数学(下)第三章 圆,1、100的弧所对的圆心角等于_,所对的圆周角等于_。 2、一弦分圆周角成两部分,其中一部分是另一部分的4倍,则这弦所对的圆周角度数为_。 3、如图,在O中,BAC=32,则BOC=_。 4、如图,O中,ACB = 130,则AOB=_。 5、下列命

鲁教版数学九年级下册5.1圆优秀课件Tag内容描述:

1、4.3 圆周角(2),九年级数学(下)第三章 圆,1、100的弧所对的圆心角等于_,所对的圆周角等于_。 2、一弦分圆周角成两部分,其中一部分是另一部分的4倍,则这弦所对的圆周角度数为_。 3、如图,在O中,BAC=32,则BOC=_。 4、如图,O中,ACB = 130,则AOB=_。 5、下列命题中是真命题的是( ) (A)顶点在圆周上的角叫做圆周角 (B)60的圆周角所对的弧的度数是30 (C)一弧所对的圆周角等于它所对的圆心角 (D)120的弧所对的圆周角是60,课前测验,B,100,50,36或144,64,100,D,自学与思考,1、圆周角定理的推论的内容分别是什么?你是怎样理解这。

2、4.3圆周角(1),圆周角:顶点在圆上,角的两边在圆内部分分别是圆的弦,这样的角叫圆周角,在射门游戏中(如图),球员射中球门的难易程度与他所处的位置B对球门AC的张角(ABC)有关.,圆周角,当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角ABC, ADC,AEC.这三个角的大小有什么关系?.在B、C、D哪个位置射门更容易些?,圆周角 顶点在圆上,它的两边分别 与圆还有另一个交点,像这样的角,叫做圆周角.,类比圆心角探知圆周角,在同圆或等圆中,相等的弧所对的圆心角相等.,在同圆或等圆中,相等的弧所对的圆周角有什么关系?,为了解决这个问题,。

3、3.3 圆周角和圆心角的关系(1),大兴学校 卿丽萍,1.圆心角的定义?,答:顶点在圆心的角叫圆心角.,圆心角的度数和它所对的弧的度数的关系,我们把顶点在圆心的周角等分成360份时,每一份的圆心角是1的角。,在同圆或等圆中,圆心角的度数和它所对的弧的度数相等。,因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份。我们把每一份这样的弧叫做1的弧。,在同圆或等圆中,,点与圆的位置关系有哪些?,当角的顶点发生变化时,这个角的位置有哪几种情况?,圆周角,特征:, 角的顶点在圆上., 角的两边都与圆相交.,圆周角定义: 顶点在圆上, 并。

4、弧长和扇形的面积,观察:制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线的长度),再下料,这就涉及到计算弧长的问题,(1)半径为R的圆,周长是多少?,C=2R,(3)1圆心角所对弧长是多少?,(2)圆的周长可以看作是多少度的圆心角所对的弧?,n,A,B,O,若设O半径为R, n的圆心角所对的弧长为 ,则,探索研究 1,360,(4)n圆心角所对弧长是多少?,n,试一试,1.已知弧所对的圆心角为900,半径是4,则弧长为_2. 已知一条弧的半径为9,弧长为8 ,那么这条弧所对的圆心角为_。 3. 钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转。

5、29.1 点与圆的位置关系,第二十九章 直线与圆的位置关系,导入新课,讲授新课,当堂练习,课堂小结,1.理解并掌握点和圆的三种位置关系. 2.用图形表示点和圆的位置关系.(重点) 3.用数量表示点和圆的位置关系.(重点),学习目标,导入新课,你玩过飞镖吗?它的靶子是由一些圆组成的,你知道击中靶子上不同位置的成绩是如何计算的吗?,情境引入,问题1 足球运动员踢出的足球在球场上滚动,在足球穿越中圈区(中间圆形区域)的过程中,可将足球看成一个点,这个点与圆具有怎样的位置关系?,讲授新课,问题2:观察下图中点和圆的位置关系有哪几种?,.,。

6、29.5 正多边形与圆,导入新课,讲授新课,当堂练习,课堂小结,第二十九章 直线与圆的位置关系,1.了解正多边形和圆的有关概念. 2.理解并掌握正多边形半径、中心角、边心距、边长之间的关系. (重点) 3.会应用正多边形和圆的有关知识解决实际问题.(难点),学习目标,问题:观看大屏幕上这些美丽的图案,都是在日常生活中我们经常能看到的.你能从这些图案中找出类似的图形吗?,导入新课,观察与思考,问题1 什么叫做正多边形?,各边相等,各角也相等的多边形叫做正多边形.,问题2 矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?,不是,因为矩形。

7、3.3垂径定理(1),请观察下列三个银行标志有何共同点?,圆的对称性,圆是轴对称图形吗?,如果是,它的对称轴是什么?你能找到多少条对称轴?,你是用什么方法解决上述问题的?,圆的对称性,圆是轴对称图形.,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.,可利用折叠的方法即可解决上述问题.,注意:对称轴是直线,不能说每一条直径都是它的对称轴;,(1)该图是轴对称图形吗?,(2)能不能通过改变AB、CD的位置关系,使它成为轴对称图形?,直径CD和弦AB互相垂直,如图,AB是O的一条弦,CD是O直径.,特殊情况,在O中,AB为弦, CD为直径,CDAB,提问:你。

8、圆的切线长定理,(1)和圆有唯一公共点的直线叫,(2)圆的切线 过切点的半径。,(3)四边形ABCD各边都和O相切,则四边形ABCD叫做这个圆的,圆的切线,垂直于,外切四边形,一复习,在经过圆外一点的切线上,这一点和切点之间的 线段的长叫做这点到圆的切线长,O,P,A,思考: 切线和切线长区别和联系: 切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。,O,P,A,B,观察与思考: PA、PB有怎样的数量关系? PO与APB又有怎样的关系?,RtAOPRtBOP,O,P,A,B, PA=PB PO平分APB,1,2,连结OA、OB、,PA、PB与O相切,点A、B是切点,1 =2,OAAP,OB。

9、切线长定理,如图,纸上有一O ,PA为O的一条 切线,沿着直线PO对折,设圆上与点A 重合的点为B。,1.OB是O的一条半径吗?,2.PB是O的切线吗?,3.PA、PB有何关系?,4.APO和BPO有何关系?,数学探究,问题:,经过圆外一点作圆的切线,这点和切点之间的线段的长叫做切线长。,数学探究,O,切线长和切线的区别和联系: 切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。,已知:,求证:,如图,P为 O外一点,PA、PB为 O的切线,A、B为切点,连结PO,切线长定理 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平。

10、鲁教版九年级下册第五章圆,5.6直线和圆的位置关系(第1课时),把太阳看成一个圆,地平线看成一条直线,注意观察直线与圆的公共点的个数,a(地平线),三,海上日出,观察探究一,直线与圆的位置关系,1.观察三幅太阳升起的照片,地平线与太阳的位置关系是怎样的?,你发现这个自然现象反映出直线和圆的位置关系有哪几种?,(地平线),a(地平线),驶向胜利的彼岸,直线与圆的位置关系,作一个圆,把直尺边缘看成一条直线.固定圆,平移直尺,直线和圆有哪几种位置关系?,有三种位置关系:,相交,直线和圆有惟一公共点(即直线和圆相切)时,这条直线叫做圆的切线,这个惟。

11、直线和圆的位置关系(二),学习目标: 1、经历切线的性质定理的探索过程, 2、能通过作出过切点的半径来解决与圆 的切线有关的计算与证明。,(一)温故而知新,相离 相切 相交,无 1个 2个,切点,交点,切线,割线,dr,d=r,dr,探索切线性质,如图,直线CD与O相切于点A,直径AB与直线CD有怎样的位置关系?说说你的理由,答:直径AB垂直于直线CD.,驶向胜利的彼岸,小颖理由如下:右图是轴对称图形,AB是对称轴。 沿直线AB对折图形时,AC与AD重合,故BAC=BAD=90,探索切线性质,小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.,假设AB与CD不垂直,过点O作OMCD,。

12、5.6直线和圆的位置关系(3) 切线及切线性质定理,学习目标: 1、经历探索切线的判定定理的过程, 2、能准确说出切线的判定定理, 3、能利用切线的判定定理解决有关问题。,直线与圆的位置关系,驶向胜利的彼岸,d r;,d r;,直线和圆相切,直线和圆相离,d r;,直线和圆相交,驶向胜利的彼岸,1.已知RtABC的斜边AB=8cm,直角边AC=4cm,(1)以点C为圆心作圆,当半径为多长时,AB与C相切?,解:(1)过点C作CDAB于D.,AB=8cm,AC=4cm.,因此,当半径长为 cm时,AB与C相切.,驶向胜利的彼岸,(2)以点C为圆心,分别以2cm,4cm为半径作两个圆,这两个圆与AB分别有怎样的位置。

13、复习,如图,若AB=CD则( )若,若 AOB= COD则( ),则( ),圆的对称性,圆是轴对称图形吗?,它的对称轴是什么?你能找到多少条对称轴?,你是用什么方法解决上述问题的?,圆的对称性,圆是轴对称图形.,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.,可利用折叠的方法即可解决上述问题.,AM=BM,探索规律,AB是O的一条弦.,你能发现图中有哪些等量关系?与同伴说说你的想法和理由.,作直径CD,使CDAB,垂足为M.,下图是轴对称图形吗?如果是,其对称轴是什么?, CD是直径, CDAB,如图,连接OA,OB,则OA=OB.,在RtOAM和RtOBM中,OA=OB,OM=OM,,RtOAMRtOB。

14、5.2 圆的对称性(一),1、什么是中心对称图形?举例说明,把一个图形绕着某一个点旋转180,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。,平行四边形、矩形、菱形、正方形,复习回忆,2、圆是中心对称图形,圆心是它的对称中心。,尝 试,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。,探 索,在同圆或等圆中,如果圆心角所对的弧相等, 那么它们所对的弦相等吗?这两个圆心角相等吗? 为什么?,讨论交流,在同圆或等圆中,如果圆心角所对的弦相等, 那么圆心角所对的弧相等吗?它们圆心角相等吗? 为。

15、5.2圆的对称性2,圆是轴对称图形吗?它的对称轴是什么?你能找到多少条对称轴?,情景创设,什么是轴对称图形?,把一个图形沿着某一条直线对折,如果直线两旁的部分 能够完全重合,那么这个图形就叫做轴对称图形。,议一议:,操作与思考:,1.在圆形纸片上任意画一条直径。,2.沿直径将圆形纸片对折,你发现什么?,圆是轴对称图形.,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.,交 流,AM=BM,AB是O的一条弦.,你能发现图中有哪些等量关系?与同伴说说你的想法和理由.,作直径CD,使CDAB,垂足为M.,下图是轴对称图形吗?如果是,其对称轴是什么?。

16、5.5 确定圆的条件,1、过一点可以作几条直线?,2、过几点可确定一条直线?,过几点可以确定一个圆呢?,回 顾,一位考古学家在长沙马王堆汉墓挖掘时,发现一圆形瓷器碎片,你能帮助这位考古学家画出这个碎片所在的整圆,以便于进行深入的研究吗?,想一想,要确定一个圆必须满足几个条件?,情景创设,经过一个已知点A能确定一个圆吗?,A,经过一个已知点能作无数个圆,你怎样画这个圆?,探 索,经过两个已知点A、B能确定一个圆吗?,A,B,经过两个已知点A、B能作无数个圆,经过两个已知点A、B所作的圆的圆心在怎样的一条直线上?,它们的圆心都在线段AB的中垂。

17、5 确定圆的条件,1.了解不在同一直线上的三个点确定一个圆,以及 过不在同一直线上的三个点作圆的方法. 2了解三角形的外接圆、三角形的外心等概念. 3经历不在同一直线上的三个点确定一个圆的探索过程,培养学生的探索能力.,一位考古学家在长沙马王堆汉墓挖掘时,发现一圆形瓷器碎片,你能帮助这位考古学家画出这个碎片所在的整圆,以便于进行深入的研究吗?,要确定一个圆必须满足几个条件?,1.过一点可以作几条直线?,2.过几点可确定一条直线?,过几点可以确定一个圆呢?,经过两点只能作一条直线.,A,经过一点可以作无数条直线.,A,B,经过一个。

18、态度决定一切 习惯成就未来,5.1圆(1),圆是生活中常见的图形,许多物体都给我们以圆的形象.,感知圆的世界,如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做圆,r,O,A,固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作“O”,读作“圆O”,提问:根据圆的定义,”圆“指的是”圆周“还是”圆面“?,圆指的是圆周,圆心和半径是确定一个圆的两个必需条件,圆心决定圆的 ,半径决定圆的 ,二者缺一不可。,位置,大小,概念深化,圆心相同,半径不同,同心圆,半径相同,圆心不同,等圆,(1)圆上各点。

【鲁教版数学九年级下册5.1圆】相关PPT文档
标签 > 鲁教版数学九年级下册5.1圆优秀课件[编号:135578]