沪教版 说课稿

9.4整式求时代数式的值注意的几个问题:(1)代入数值前应先指明字母的取值,把“当时”写出来。(2)如果字母的值是负数、分数,代入时应加上括号;(3)代数式中省略了乘号时,代入9.5合并同类型(合并同类项)第一环节:引例:把具有相同特征的事物归为一类第一环节:引例:把具有相同特征的事物归为一类第一环

沪教版 说课稿Tag内容描述:

1、凡 卡,一课时,学习目标:,1.了解旧俄时代穷孩子的悲惨命运,理解作者表达的思想感情。2.学习课文的细节描写和叙述、信、凡卡的回忆交叉在一起描写的方法。3.有感情地朗读课文。,讨论:凡卡在信中讲了哪几件事?说明他是个怎样的孩子?,自主学习,1.问候爷爷,表明自己的思念及自己的孤 儿身份。 2.痛苦的学徒生活。 3.介绍莫斯科见闻。 4.哀求爷爷、问候熟人。,研读共品:痛苦的学徒生活挨打揪、拖、揍、戳、打 挨饿一点儿面包、稀粥 挨冻睡在过道里、没有鞋 没法睡一就,非 人 生 活,学习文中回忆的部分(4、5、6、13、14节),思考讨论:凡。

2、凡卡,凡卡,契诃夫,契诃夫简介,俄国著名作家 原名安东巴甫洛维奇契诃夫 生于1860年,死于1904年。他出生于小商人家庭。 1880年进莫斯科大学医科求学。做过店员,当过医生,后弃医从文. 他生活在十九世纪末期,正是沙皇俄国最黑暗的时代。他的作品无情地揭露了沙皇统治下不合理的社会制度和社会的丑恶现象。,小说的作者是19世纪后期俄国的伟大作家契诃夫。契诃夫从小 就熟悉学徒生活,同情他们的不幸遭遇,所以凡卡写得真 实感人。 他写了很多极为深刻的揭露沙皇黑暗统治和旧俄人民悲惨生活 的作品。他的作品曾经受到列宁的赞赏。 今天学习。

3、祖父和我 萧红,导入:童年是什么?,童年是一支歌,跳跃着美妙的音符; 童年是一首诗,充满了幻想和憧憬; 童年是一幅画,稚嫩的画笔描绘出眼里的多姿世界。 童年会在每个人的记忆里留下最美好的印记。 这节课就让我们跟随我国现代史上著名的女作家萧红重返童年时光,一起回忆她与祖父在一起度过的温情岁月!,作者简介:,萧红(1911-1942),原名张乃莹,黑龙江人,幼年丧母,父亲性格暴戾,她只有从年迈的祖父那里享受到些许人间温暖,因此萧红与祖父的关系非常好,寂寞的童年形成了萧红性格中孤独、敏感、矜持而又倔强的一面。由于对封建。

4、11.6轴对称,猜一猜,下列图片被遮住了一半 请说出图片的名称,猜一猜,下列图片被遮住了一半. 请说出图片的名称.,猜一猜,下列图片被遮住了一半. 请说出图片的名称,观察下图中的每组图案,你发现了什么?,如果把一个图形沿一条直线翻折,能与另一个图形重合,那么叫做这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做关于这条直线的对称点。,都是沿一条直线折叠后能够互相重合。轴对称图形是一个图形。 轴对称是两个图形之间的关系。,轴对称和轴对称图形关系:联系:区别:,用折纸描图等方法,改变对称轴的方向和。

5、中心对称,观察下面的两个图形你有什么发现?,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,A,B,C,A,C,B,O,概念,把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,也称这两个图形成中心对称,这个点叫作对称中心,2个图形中的对应点叫做对称点,。

6、图形的旋转,平移的定义: 所有点、同方向、等距离 平移的性质:平移的两个要素:,复习回顾,把一个图形绕着某一定点O转动一个角度的图形变 换叫做旋转这个定点O叫旋转中心,转动的角叫 做旋转角,如果图形上的点P经过旋转变为点P,那么这两个点P和P叫做这个旋转的对应点.,动态演示,O,P,P,探究新知,图形的旋转,1、下列现象中属于旋转的有( )个.地下水位逐年下降;传送带的移动; 方向盘的转动; 水龙头的转动; 钟摆的运动; 荡秋千.A.2 B.3 C.4 D.5,探究新知,2、举出一些生活中的实例,并指出旋转中心和 旋转角.,探究新知,3、时钟的时针在不。

7、平移,工厂传送带在传送。,飞机起飞前在跑道上加速滑行。,滑雪运动员在平坦雪地上滑翔。,大楼电梯上上下下迎送来客。,这些运动现象都给我们带来了怎样一种感觉?,请同学门根据自己的 体会,说说什么是平移?,平移:图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称平移。我们身边有哪些平移的例子?,探究新知,1.(1)说说下面的这些运动哪些是平移,哪些不是平移,为什么?,练一练,(2)下列各组图形中图(2)可以由图(1)平移得到的是( ),A B C,B,练一练,(3)在下面的六幅图案中,(2)(3)(4)(5)(6)中的哪个图。

8、9.2代数式,课前复习,1、搭x个这样的正方体所需的火柴棒的根数为:,4+3(x-1),2、长方形的长为m, 长方形的宽为n,则长方形的周长和面积分别为:,3、一辆汽车t小时行驶了s千米,则汽车的速度为:,2(m+n),mn,3x+1,2(m+n),mn等,这些用字母表示数的式子都是由运算符号、括号、数、字母连接而成的,它能简明地表示数量关系。,用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式。,注:( 1)单独一个数或一个字母也是代数式。如字母a、数字2也是代数式。(2) 代数式书写格式注意点,学习新知,例题1 判断下列各式是否代数式?,例题2 用代数。

9、9.1字母表示数(1),用数学式子简明地表示:,加法交换律,问题1,a+b=b+a,利用字母能简明地表示一些运算律,加法交换律:,a+b=b+a,乘法交换律:,ab=ba,加法结合律:,(a+b)+c=a+(b+c),乘法结合律:,(ab)c=a(bc),乘法分配律:,a(b+c) =ab+ac,问题2,还记得三角形的面积公式吗?,利用字母能简明地表示特定意义的公式,a,h,S = ab,S = ah,S =r2,用所给字母分别表示出下列图形的面积,(面积用S表示),某数的 与4的差是2,求某数是多少?,问题3,设某数是X,则可列方程:,字母能表示方程中符合条件的未知数,观察下列各组数的规律,先写出第5个数是什么,。

10、9.9 积 的 乘 方,1、叙述同底数幂乘法法则,并用字母 表示。,2、叙述幂的乘方法则,并用字母表示。,语言叙述:同底数幂相乘,底数不变,指数相加。 字母表示:aman=am+n ( m、n都为正整数),语言叙述:幂的乘方,底数不变,指数相乘。 字母表示:(am)n=amn (m,n都是正整数),复习引入新课:,观 察 :,(35)2,=(35) (35),幂的意义,=(33) (55),乘法交换律、结合律,=3252,按以上方法,完成下列填空:,(25)2=,(25) (25),=(22) (55),=2252,(xy)4=,(xy) (xy) (xy) (xy),=(xxxx) (yyyy),=x4y4,2、比较下列各。

11、9.8幂的乘方,复习,幂的意义:,=an,同底数幂乘法的运算性质:,am an,=am+n,am an,=am+n,(m,n都是正整数),aa a,1下面的计算对不对?如果不对应该怎样改正?,2计算:,问题:,根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:,你发现了什么?,6,6,3m,(根据 ),乘方的意义,(根据 ),同底数幂的乘法法则,(根据乘法的定义),对于任意底数a与任意正整数m,n,(乘方的意义),(同底数幂的乘法法则),(乘法的定义),(m,n都是正整数),幂的乘方,底数 ,指数 ,不变,相乘,想一想: 同底数幂的乘法法则与幂的乘方法则有什么相同点和不同点?,。

12、9.16 分组分解法,整式乘法,(a+b)(m+n),=a(m+n)+b(m+n),=am+an+bm+bn,am+an+bm+bn,=a(m+n)+b(m+n),=(a+b)(m+n),定义: 这种把多项式分成几组来分解因式的方法 叫分组分解法。,注意:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。,因式分解,新知学习,【注意】 (1)把有公因式的各项归为一组,并使组之间产生新的公因式,这是正确分组的关键,因此,设计分组方案是否有效要有预见性. (2)分组的方法不唯一,而合理地选择分组方案,会使分解过程简单. (3)分组时要用到添括。

13、十字相乘法,2018年9月27日10时54分,1、计算,2、问题:你有什么快速计算类似的多项式的方法吗?,复习,思考:,能用学过的方法分解因式吗?,观察:,反过来可得:,如果二次三项式 中常数项q能 分解成两个因数a、b的积,而且一次项系数p又 恰好是a+b,那么,分解因式,定义:利用十字交叉线来分解系数,把二次三项式 分解因式的方法叫做十字相乘法。,例题1:分解因式,例题2:分解因式,畅谈心得,通过这节课的学习,你有些 什么收获?,作业:伴你成长9.15(1)练习册p32 1、2、3、4,拓展:分解因式,。

14、9.14 公式法,我们来试一试看谁算得快:6782-3782 852-842你想知道怎么才能算得快吗?,活动一 将边长为a的正方形一角减去一个边长为b的小正方形,观察你剪剩下的部分。思考:怎样计算它的面积?,a2b2 = (ab)(ab),a - b = (a+b)(a-b),因式分解,平方差公式: (a+b)(a-b) = a - b,整式乘法,(一)运用平方差公式分解因式,例1.把下列各式分解因式 (1)16a- 1 ( 2 ) 4x- mn( 3 ) x - y,9,25,1,16,( 4 ) 9x + 4,解:1)16a-1=(4a) - 1=(4a+1)(4a-1),解:2) 4x- mn=(2x) - (mn)=(2x+mn)(2x-mn),例2.把下列各式因式分解 ( x + z 。

15、9.13 提取公因式法,探究与交流,计算下列各式,你能把下列各式写成乘积的形式吗?,整式乘法,因式分解,把一个多项式化成几个整式的积的形式叫做把这个多项式因式分解,也叫做把这个多项式分解因式。,下列代数式变形中,哪些是因式分解?哪些不是?为什么?,(1)3a(a+2)=3a2+6a( 2) 3a2+6a = 3a(a+2) (3)x2-4=(x+2)(x-2)( 4) x2-3x+1=x(x-3) +1 (5)a2-2ab+b2=(a-b) 2( 6) x2+3x-4=(x+4)(x-1) (7)2ab2 ab=2ab(b-0.5),不是 是 是 不是 是 是 是,一个多项式中每一项都含有的因式,叫做这个多项式各项的公因式。,公因式,=m(a+b),把该公因。

16、9.12 完全平方公式,用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.,1、多项式的乘法法则是什么?,am+an,bm+bn,+,=,(m+n),(a+b),观 察,计算下列各式,你能发现它们的运算形式与结果有什么规律吗?,(1)(x1)2 (x1)(x1) _,(3)(x1)2 (x1)(x1) _,(2)(m2)2 _,(4)(m2)2 _,x2 2x 1,x2 2x 1,m24m4,m24m4,观 察,a2b2与(ab)2有什么区别?,怎样计算(ab)2呢?,解:(ab)2 =(ab)(ab) =a2ababb2 =a22abb2,完全平方公式的数学表达式:,完全平方公式的文字叙述:,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2。

17、9.11 平方差公式,一、复习引入、温故知新,温故: 多项式的乘法法则多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。,(a+b)(m+n)=,am+an+bm+bn,思考1:计算下列各题,并观察下列乘式与结果的特征:(1) (y+2)(y-2)=(2) (3-a)(3+a)=(3) (2a+b)(2a-b)=,你发现了什么规律?,比较等号左右两边: 左边:两个数的和与这两个数的差的积 右边:这两个数的平方差,y2-22,32-a2,(2a)2-b2,猜想(a+b)(ab)=?,二、推导公式、揭示内涵,平方差公式:两个数的和与这两个数的差的乘积等于这两个数的平方差,即,你能想办法。

18、9.5合并同类项,回顾与反思,下列各代数式分别是几项的和,每项的 系数是什么? xy2; m1; s2+2s2t24t2 ,1 3,2 5,周末,点点一家要外出游玩,爸爸、 妈妈和点点各自选了他们要吃的东西:,买的时候,点点怎么说?,_个汉堡_个苹果_个草莓_瓶饮料,4 3 8 3,引入,活动1,如图,大长方形由两个小长方形组成,求这个大长方形的面积。,第一部分的面积:S1,第二部分的面积:S2,大长方形的面积是:SS1S2,8 n,5 n,8 n 5 n,(8 5) n 13 n,活动2,想一个办法按照一定的标准给下面的代数式分类(同伴交流,并派代表发言)。8n -7a2b 2a2b 3 -4n 6ab 5n -1 。

19、9.5 合并同类型,(合并同类项),第一环节:引例:,把具有相同特征的事物归为一类,第一环节:引例:,把具有相同特征的事物归为一类,第一环节:引例:,把具有相同特征的事物归为一类,说出多项式的各项:,上面每一组的两项之间有什么相同之处?,一.所含字母相同,二.相同字母的指数也相同,在多项式中,具有这样特征的项叫做同类项(like terms),几个常数项也是同类项,第二环节:新课探索,三.过程分析,三.过程分析(合并同类项),说出下列多项式中的同类项:,第二环节:新课探索,下列各组单项式是不是同类项:,字母排列顺序不同,所以它们不是同类项。

20、9.4 整 式,求时代数式的值注意的几个问题: (1)代入数值前应先指明字母的取值,把“当时”写出来。 (2)如果字母的值是负数、分数,代入时应加上括号; (3)代数式中省略了乘号时,代入数值以后必须添上乘号。,复习:,这些代数式包含哪些运算?,, ab , ,,由数与字母的积或字母与字母的积组成,这样的代数式叫做单项式。,单项式的系数:,一个单项式中,所有字母的指数之和.,1次,2+1=3次,单项式的次数:,6,0次,(2) ,2a +2b,,这些代数式包含哪些运算?,几个单项式的和叫做多项式。,多项式的次数:,2次,2+1=3次,一个多项式中,次数最。

【沪教版 说课稿】相关PPT文档
标签 > 沪教版 说课稿[编号:44367]