第一讲 浓度与经济问题综合提高 本讲知识点汇总: 一、 基本公式 1 浓度问题 ; ; 2 经济问题 ; ; ; 注:浓度的范围是 0%100%,利润率可以超过 100% 二、 基本方法 1 不变量法 2 十字交叉法 例如: 200 克 20%的 A 溶液与 400 克 50%的 B 溶液混合, 可
高斯小学奥数六年级下册含答案第14讲_组合综合练习Tag内容描述:
1、第一讲 浓度与经济问题综合提高 本讲知识点汇总: 一、 基本公式 1 浓度问题 ; ; 2 经济问题 ; ; ; 注:浓度的范围是 0%100%,利润率可以超过 100% 二、 基本方法 1 不变量法 2 十字交叉法 例如: 200 克 20%的 A 溶液与 400 克 50%的 B 溶液混合, 可以得到 600 克 40%的溶液,此时有以下关系: 此时左边的重量比等于右边的浓度差之比,即 3 列表法 例1 要把 600 克浓度为 95%的酒精,稀释成浓度为 75%的消毒酒精,需要加入多少克蒸馏 水? (2)要配制 180 克 20%的硫酸溶液,需要 16%和 22%的硫酸溶液各多少克? 200:40010%:20% 2。
2、第十九讲 计数综合提高上 一、 枚举法 1、简单枚举 2、分类枚举 3、特殊的枚举:标数法、树形图 二、 加法原理分类 如果完成一件事有几类方式, 在每一类方式中又有不同的方法, 那么把每类的方法 数相加就得到所有的方法数 加法原理的类与类之间会满足下列要求: (1)只能选择其中的某一类,而不能几类同时选; (2)类与类之间可以相互替代,只需要选择某一类就可以满足要求 三、 乘法原理分步 如果完成一件事分为几个步骤, 在每一个步骤中又有不同的方法, 那么把每步的方 法数相乘就得到所有的方法数 乘法原理的步与步之间满足下列要求。
3、第二十一讲 数字谜综合二 我们先来观察几个有趣的等式: 2222,1.531.53,1.261.26, 这些等式,等号左右两边出现的数字相同,左边是乘法,右边是加法,而所得的乘 积与和数相同也就是两个数的乘积等于这两个数的和你能再写出几个类似的等式 吗? 如果盲目瞎写,随便找两个数,看看乘积是不是与和数一样,这是不可行的,有如 海底捞针而事实上,要写出几个类似的等式是很容易的前提是你要找到其中的规 律我们设这两个数分别为a和b,我们希望和与积相同,也就是abab 我们对这个等式进行变形: (1)abab; (2)abab; 【把含有字母a的项都。
4、第二十六讲 应用题综合 本讲知识点汇总: 与生活相关的形式多样的应用题,需要结合实际情况具体分析;条件比较隐晦,数 量关系较为复杂的应用题;具有不确定性,需要进行简单判断的应用题 具有多种可能情况,需要进行分类讨论的问题;需要进行合理安排对策,以达到最 佳效果的问题 例1 如图表格是 2013 年最新的整存整取的利率表: 李老师有 10000 元钱,他存入银行,整存两年后取出,到时本息一共有多少钱?假设李 老师存一年后, 将本息再存入, 两年后李老师有多少钱?哪种方式两年后得的钱多一些? 分析分析=利息 本金 年利率 时间,。
5、第二十讲 计数综合提高下 一、上楼梯模型 找寻每种情况与前面若干种情况之间的关系 二、几何图形分平面增量分析 考虑每次增加一个图形时,所增加的平面数,在分析问题时,要注意以下几点: 1. 交点越多越好; 2. 交点多决定段数多(两种情况,即封闭图形和不封闭图形) ; 3. 有几段则增加几部分(有直线要先画直线) 三、传球法 1. 传球法是树形图的简化版本; 2. 传球规则决定累加规则; (1)首先从传球者角度考虑传球方法; (2)其次从接球者角度考虑如何累加; 3. 可以使用传球法的题型; (1)对相邻数位上的数字大小有要求的计数。
6、第五讲 抽屉原理二 本讲知识点汇总: 一、 最不利原则: 为了保证保证 能完成一件事情, 需要考虑在最倒霉 (最不利) 的情况下, 如何能达到目标 二、 抽屉原理: 形式 1:把个苹果放到 n 个抽屉中,一定有 2 个苹果放在一个抽屉里; 形式 2:把个苹果放到 n 个抽屉中,一定有个苹果放在一个抽屉 里 例1 中国奥运代表团的 173 名运动员到超市买饮料, 已知超市有可乐、 雪碧、 芬达、 橙汁、 味全和矿泉水 6 种饮料, 每人各买两种不同的饮料, 那么至少多少人买的饮料完全相同? 分析分析本题的“抽屉”是饮料的选法, “苹果”是 173 。
7、第二讲 计算综合二 到了六年级,我们对四则运算提出了新的要求,考试中出现的经常是比较复杂的分数四则混合 运算题目,因而要求有较强的计算基本功在计算的同时,综合运用以前学过的各种巧算技巧,往 往能使题目的计算过程变得简洁当然现在的巧算技巧不再像以前那么直接,而是蕴藏在计算的细 节之中 练习 1 计算: 431 1.274.19 12 2143 计算: 541 3.8512.3 13 1854 分析分析把除号变乘号,带分数化为假分数计算的时候,多留意观察,看看有没有哪些步 骤能够用到巧算 例题 1 计算: 59 1935.22 1993 0.41.6 910 527 1995 0.51995 1965.22。
8、第四讲 曲线形问题综合提高 本讲知识点汇总: 一、 基本曲线形计算 1. 圆:2 Crd ; 22 2 44 dC Sr 2. 扇形:2 360 n lr ; 2 3 6 02 nlr Sr 3. 圆柱体:VSh 底 4. 圆锥体: 1 3 VSh 底 二、 曲线形计算技巧: 1. 割补法 2. 平移、旋转 3. 重叠(容斥) 例1 (1)如图 1,有一个长是 10、宽是 6 的长方形,那么两个阴影部分的面积之差为多 少?( 取 3.14) (2)如图 2,三角形 ABC 是直角三角形,AB 长 40 厘米,以 AB 为直径做半圆,阴影 部分比阴影部分的面积小 28 平方厘米求 AC 的长度 ( 取 3.14) 分析分析 (1)阴影是不规则图形。
9、第九讲 几何综合问题 这一讲我们学习几何综合题,题型是复杂而巧妙的这种问题往往需要 我们有点武侠小说中“借力打力”的能力,不要硬碰硬,而是借巧劲比如 已知一个面积为 2 的正方形,求边长为其两倍的正方形的面积把边长具体 数值求出来,用边长的关系来计算面积的想法是不可行的而且事实上也是 没必要的,我们可以把面积为 2 的正方形边长设为a,它的两倍为2a,则 2 2a ,以2a为边长的正方形面积为 2 2244 28aaa 我们再来看 几个用类似想法解决的问题 本讲知识点汇总: 一、 巧用面积公式,利用图形面积之间的和差关系来求解图形面积 。
10、第十四讲 小升初总复习模拟测试一 【学生注意】本讲练习为基础测试卷,满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 7 小题,每题 5 分) 1. 计算: 113 2220.377499 3 _ 2. 一套玩具售价是 120 元,打八折出售,仍能获利 60%,则每套玩具的进价是_元 3. 一个分数,分子与分母的和是 23,如果分子、分母都减去 4,得到的分数约简后是 1 4 那么原来 的分数是_ 4. 两张纸条,原来长度比为3:2,都撕去 15 厘米后,长度比变为7:3现在短纸条的长度是_ 厘米 5. 20 个小朋友排成一行,墨莫与萱萱之间隔了 5 个小朋友如果墨莫在。
11、第三讲 分数计算综合提高 本讲知识点汇总: 一、 分数计算技巧 1. 凑整 2. 分组 3. 提取公因数 4. 约分(整体约分) 二、 分数与循环小数互化 1. 分数化循环小数 2. 循环小数化分数 三、 比较与估算 四、 分数裂项 五、 分数数列、数表 例1 (1) 3333 9999991 4444 ; (2) 12399 234100 ; (3) 222 111 (1) (1)(1) 2399 ; (4) 111222989899 231003410099100100 分析分析大家还记得凑整、分组、约分等巧算方法吗? 练习 1、 111222181819 23203420192020 例2 (1) 1919191901901900190019 9898989809809800980098 ; (2) 166566。
12、第二讲 余数问题综合提高 本讲知识点汇总: 一 求余数 1 直接做除法 2 特征求余(注意和整除特征对比) ; 3 替换求余 4 周期求余 5 分解求余 二 物不知数问题(求被除数) 1 也称“韩信点兵” ,关于它的解法,后人总结出“中国剩余定理” (也 称“孙子定理” ) 物不知数问题的基本解法是:逐步增加条件,逐步找寻 2 分解求余 三 同余 1 概念 如果 a 和 b 除以 c 的余数相同,则称 a、b 对 c 同余,例如:10 和 28 对 9 同余 2 如果 a、b 对 c 同余,则是 c 的倍数 例1 (1)418 814 1616除以 7、8、9、11 的余数分别是多少? (2) 89。
13、第九讲 应用题综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 语文测验,卡莉娅前三次的平均分是 77若想使平均分达到 80,她的第四次测验最少要得_ 分 2. 小高、萱萱、卡莉娅和墨莫四人一起折了 1200 只千纸鹤已知小高和萱萱两人共折了 600 只,小 高和卡莉娅两人共折了 400 只,小高和墨莫两人共折了 300 只,那么小高折了_只千纸鹤 3. 一个灰太狼玩具的进价是 20 元,售价是 50 元,结果没人来买于是店主决定打折出售,但希望利 润率不低于 25%,那么这个玩具最多。
14、第十四讲 工程问题综合提高 本讲知识点汇总: 1. 工程问题基本公式: 工作量=工作效率 工作时间; 工作时间=工作量 工作效率; 工作效率=工作量 工作时间 2. 理解“单位 1”的概念并灵活应用; 3. 有的工程问题,工作效率往往隐藏在条件中,工作过程也较为复杂,要仔细梳理工 作过程、灵活运用基本数量关系; 工作量其实是一种分率,利用量率对应可以求出全部工作的具体数量 典型题型 1. 基本效率计算:最常见的工程问题,基本思路是根据工作过程计算效率,通过对效 率的分析计算时间 (1) 基本工程问题:关键在于效率的计算; (2) 中。
15、第十讲 数字谜综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 下边是三个数的加法算式,每个“”内有一个数字,则三个加数中 最大的一个是_ 2. 下边的加法算式中,每个“”内有一个数字,所有“”内的数字之 和最大可达到_ 3. 在下面竖式中,每个“”内有一个数字,那么所得乘积最小是 _,请给出一种使得乘积最小的填法 4. (1)请在横线上填上加号或减号,使等式成立: 2009_10_11_12_13_14_152016 (2)请在横线上填上乘号或除号,使等式成立: 2010_3_4_5_67_8_9。
16、第十一讲 数论综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 进位制的换算: (1)412321(_)10; (2)1075(_)5 2. 求整数部分与小数部分: (1) 2 3.3332 _; (2) 23.456.7_ 3. 把 2 7 化成循环小数,小数点后第 2010 个数字是_ 4. 2010 的全部约数有_个,这些约数的和数是_ 5. (1)如果123ab能被 72 整除,则ab _ (2)如果2010 2010 2010ab能被 99 整除,则ab _ 6. 两个自然数的最大公约数是 100,最小公倍数是20100,这两个自然数的差是 6400,那么这两个自。
17、第十二讲 计数综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 用 0、1、2、3、4、5 这六个自然数中的三个组成三位数,从个位到百位的数字依次增大,且任意 两个数字的差都不是 1,这样的三位数共有_个 2. 从 1 到 30 中选出两个不同的数相加,和大于 30 的情况有_种 3. 从 1000 到 2010 中,十位数与个位数相同的数有_个 4. 在用数字 0、1 组成一个 6 位数中,至少有 4 个连续的 1 的数共有_个 5. 3 个海盗分 30 枚金币,如果每个海盗最多分 12 枚,一共有_种不同的。
18、第八讲 几何综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一一、填空题、填空题(本题共有 8 小题,每题 6 分) 1. 如图,已知2BODO,6COAO,阴影部分的面积和是 13 平方 厘米,那么四边形 ABCD 的面积是_平方厘米 2. 已知右图中:3:4AD DB ,CEEB,:1:3CF CD ,若DEF的面积 为 8 平方厘米,则三角形 ADC 的面积为_平方厘米 3. 如图,长方形草地 ABCD 被分为面积相等的甲、乙、丙和丁四 份,其中图形甲的长和宽的比是:2:1a b ,那么图形乙的长和 宽的比是_ 4. 如右图,有三个正方形 ABCD、BEFG 和 CHIJ,其中正方形 ABCD 。
19、第七讲 计算综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一一、填空填空题题(本题共有 7 小题,每题 4 分) 1. 11111 23456 2481632 _ 2. 20102010 201020102010_ 3. 24 8 1.254.82.4 14.125 31 _ 4. 1 3 2 5 4 6 _ 5. 111111 3 44 55 6677 88 9 _ 6. 1111 20101111 3452010 _ 7. 123456789999999999_ 二二、填空填空题题(本题共有4小题,每题5分) 8. 8121620242832 15356399143195255 _ 9. 22 2.014.02 7.997.99_。
20、第十三讲 组合综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 箱子里有 7 个红球、8 个白球和 9 个蓝球,从中摸出_个球,才能保证每种颜色的球都至少有 一个 2. 三位老师对四位同学的竞赛结果进行了预测邹老师说: “墨莫第一, 卡莉娅第四 ” 李老师说: “萱 萱第一,小高第三 ”杨老师说: “卡莉娅第二,萱萱第三 ”结果四位同学都进入了前四名,而三 位老师的预测各对了一半,那么萱萱是第_名 3. 由 1、4、7、10、13 组成甲组数,由 2、5、8、11、14 组成乙组。