六年级上册综合实践

第二十一讲 数字谜综合二 我们先来观察几个有趣的等式: 2222,1.531.53,1.261.26, 这些等式,等号左右两边出现的数字相同,左边是乘法,右边是加法,而所得的乘 积与和数相同也就是两个数的乘积等于这两个数的和你能再写出几个类似的等式 吗? 如果盲目瞎写,随便找两个数,看看乘积是不是与

六年级上册综合实践Tag内容描述:

1、第二十一讲 数字谜综合二 我们先来观察几个有趣的等式: 2222,1.531.53,1.261.26, 这些等式,等号左右两边出现的数字相同,左边是乘法,右边是加法,而所得的乘 积与和数相同也就是两个数的乘积等于这两个数的和你能再写出几个类似的等式 吗? 如果盲目瞎写,随便找两个数,看看乘积是不是与和数一样,这是不可行的,有如 海底捞针而事实上,要写出几个类似的等式是很容易的前提是你要找到其中的规 律我们设这两个数分别为a和b,我们希望和与积相同,也就是abab 我们对这个等式进行变形: (1)abab; (2)abab; 【把含有字母a的项都。

2、第十四讲 工程问题综合提高 本讲知识点汇总: 1. 工程问题基本公式: 工作量=工作效率 工作时间; 工作时间=工作量 工作效率; 工作效率=工作量 工作时间 2. 理解“单位 1”的概念并灵活应用; 3. 有的工程问题,工作效率往往隐藏在条件中,工作过程也较为复杂,要仔细梳理工 作过程、灵活运用基本数量关系; 工作量其实是一种分率,利用量率对应可以求出全部工作的具体数量 典型题型 1. 基本效率计算:最常见的工程问题,基本思路是根据工作过程计算效率,通过对效 率的分析计算时间 (1) 基本工程问题:关键在于效率的计算; (2) 中。

3、第二十六讲 应用题综合 本讲知识点汇总: 与生活相关的形式多样的应用题,需要结合实际情况具体分析;条件比较隐晦,数 量关系较为复杂的应用题;具有不确定性,需要进行简单判断的应用题 具有多种可能情况,需要进行分类讨论的问题;需要进行合理安排对策,以达到最 佳效果的问题 例1 如图表格是 2013 年最新的整存整取的利率表: 李老师有 10000 元钱,他存入银行,整存两年后取出,到时本息一共有多少钱?假设李 老师存一年后, 将本息再存入, 两年后李老师有多少钱?哪种方式两年后得的钱多一些? 分析分析=利息 本金 年利率 时间,。

4、第二十讲 计数综合提高下 一、上楼梯模型 找寻每种情况与前面若干种情况之间的关系 二、几何图形分平面增量分析 考虑每次增加一个图形时,所增加的平面数,在分析问题时,要注意以下几点: 1. 交点越多越好; 2. 交点多决定段数多(两种情况,即封闭图形和不封闭图形) ; 3. 有几段则增加几部分(有直线要先画直线) 三、传球法 1. 传球法是树形图的简化版本; 2. 传球规则决定累加规则; (1)首先从传球者角度考虑传球方法; (2)其次从接球者角度考虑如何累加; 3. 可以使用传球法的题型; (1)对相邻数位上的数字大小有要求的计数。

5、学科教师辅导讲义学员编号:年级:六年级课时数:3学员姓名:辅导科目:奥数学科教师:授课主题第29讲-综合推理授课类型T同步课堂P实战演练S归纳总结教学目标学会对一个问题进行分析、推理;利用我们的推理来解决一些较简单的问题;通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔、勇于探索的意志品质。授课日期及时段T(Textbook-Based)同步课堂知识梳理解数学题,从已知条件到未知的结果需要推理,也需要计算,通常是计算与推理交替进行,而且这种推理不仅是单纯的逻辑推理,而是综合运用了数学知识和专。

6、第 15 讲几何综合二内容概述综合运用各种方法处理具有相当难度的几何问题掌握几何变换的初步技巧,例如平移、翻转、旋转等,必要时可利用辅助线进行分析典型问题兴趣篇1图 15-1 中有半径分别为 5 厘米、4 厘米、3 厘米的三个圆,A 部分(即两小圆重叠部分)的面积与阴影部分的面积相比,哪个大?大多少?2如图 15-2,在两个同心圆上有一条两端点都在大圆上的线段与小圆相切,其长度为 10 厘米求阴影部分的面积 ( 取 3.14)3如图 15-3,大正方形中有三个小正方形,右上角正方形的面积为 27,左下角正方形的面积为 12,中间阴影正方形的 2 。

7、学科教师辅导讲义学员编号:年级:六年级课时数:3学员姓名:辅导科目:奥数学科教师:授课主题第29讲-综合推理授课类型T同步课堂P实战演练S归纳总结教学目标学会对一个问题进行分析、推理;利用我们的推理来解决一些较简单的问题;通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔、勇于探索的意志品质。授课日期及时段T(Textbook-Based)同步课堂知识梳理解数学题,从已知条件到未知的结果需要推理,也需要计算,通常是计算与推理交替进行,而且这种推理不仅是单纯的逻辑推理,而是综合运用了数学知识和专。

8、第 14 讲计数综合三内容概述建立递推的思想,将问题的复杂情形与简单情形联系起来;学会观察和发现递推关系;利用树形固、列表等方法处理某些递推关系,另外,综合运用各种方法处理与数字相关的复杂计数问题典型问题兴趣篇1一个楼梯共有 10 级台阶,规定每步可以迈一级台阶或二级台阶走完这 10 级台阶,一共可以有多少种不同的走法?2小悦买了 10 块巧克力,她每天最少吃一块,最多吃 3 块,直到吃完,共有多少种吃法?3用 l2 的小方格覆盖 27 的长方形,共有多少种不同的覆盖方法?4如果在一个平面上画出 4 条直线,最多可以把平面分成几。

9、第 9 讲计算综合二内容概述综合性较强的计算问题。典型问题兴趣篇1计算: ).095321.()857.635.4(3 2要使等式 成立,方格内应该填入多少?40) 2.1(6. 3计算: 2801532474计算: .319505计算下列繁分数: ;321)(;4132)(1987)(6算式 的计算结果,小数点后第 2008 位是数字几?098765127定义运算符号“” 满足: 计算下列各式:ba(1) 100102; (2) (34) 5 )32(18已知 ,那么方框所代表的数是什么?87645:37 :129如图 9-1,每一条线段的长度规定为它的端点上两数之和,图中 6 条线段的长度总和是多少?10我们规定:n=nnl) ,比如:l=l2,2=23,。

10、第 22 讲数论综合三内容概述需要运用代数来处理的复杂数论问题;数论证明题。典型问题兴趣篇1(1)求所有满足下列条件的三位数:在它左边写上 40 后所得的五位数是完全平方数(2)求满足下列条件的最小自然数:在它左边写上 80 后所得的数是完全平方数2已知 n!3 是一个完全平方数,试确定自然数 n 的值(n! =1 23n)3一个完全平方数是四位数,且它的各位数字均小于 7如果把组成它的每个数字都加上 3,便得到另外一个完全平方数求原来的四位数4请写出所有各位数字互不相同的三位奇数,使得它能被它的每一个数位上的数字整除5在一个两位数的十位与。

11、第 18 讲数论综合二内容概述综合运用各种知识解决的较复杂教论问题;与二次不定方程、分式不定方程有关的数论问题典型问题兴趣篇1有 4 个不同的正整数,它们中任意 2 个数的和都是 2 的倍数,任意 3 个数的和都是 3 的倍数要使这 4 个数的和尽可能小,这 4 个数应该分别是多少?2已知算式(123n)+2007 的结果可表示为 n(n1)个连续自然数的和请问:共有多少个满足要求的自然数 n?3有些自然数能够写成一个质数与一个合数之和的形式,并且在不计加数顺序的情况下,这样的表示方法至少有 4 种所有满足上述条件的自然数中最小的一个是多少?4。

12、第 20 讲计数综合四内容概述了解对应的思想,维够建立起一类对象与另一类对象之间的对应关系,并通过对后者的计数得到前者的答案;需要考虑对称性的各种复杂计数问题,解题时要注意旋转和翻转对结果的影响典型问题兴趣篇1在 88 的方格表中,取出一个如图 20-1 所示的由 3 个小方格组成的“L”形,共有多少种不同的取法?2冬冬妈妈每天让冬冬吃 1 个鸡蛋或者 1 个鸭蛋,那么冬冬吃完家里的 4 个鸡蛋和 4 个鸭蛋共有多少种吃法?3常吴与古力两人进行围棋“棋圣”冠军争霸赛,比赛没有平局,谁先胜 4 局即获得比赛的胜利,请问:比赛过程一共。

13、第二讲 计算综合二 到了六年级,我们对四则运算提出了新的要求,考试中出现的经常是比较复杂的分数四则混合 运算题目,因而要求有较强的计算基本功在计算的同时,综合运用以前学过的各种巧算技巧,往 往能使题目的计算过程变得简洁当然现在的巧算技巧不再像以前那么直接,而是蕴藏在计算的细 节之中 练习 1 计算: 431 1.274.19 12 2143 计算: 541 3.8512.3 13 1854 分析分析把除号变乘号,带分数化为假分数计算的时候,多留意观察,看看有没有哪些步 骤能够用到巧算 例题 1 计算: 59 1935.22 1993 0.41.6 910 527 1995 0.51995 1965.22。

14、第九讲 几何综合问题 这一讲我们学习几何综合题,题型是复杂而巧妙的这种问题往往需要 我们有点武侠小说中“借力打力”的能力,不要硬碰硬,而是借巧劲比如 已知一个面积为 2 的正方形,求边长为其两倍的正方形的面积把边长具体 数值求出来,用边长的关系来计算面积的想法是不可行的而且事实上也是 没必要的,我们可以把面积为 2 的正方形边长设为a,它的两倍为2a,则 2 2a ,以2a为边长的正方形面积为 2 2244 28aaa 我们再来看 几个用类似想法解决的问题 本讲知识点汇总: 一、 巧用面积公式,利用图形面积之间的和差关系来求解图形面积 。

15、六年级语文上册期末复习专题(六)综合学习六年级语文上册期末复习专题(六)综合学习 (一) 读万卷书,行万里路,暑假里,和小伙伴一起跟随“学子专列”开启浙江温州山水之旅吧! 第一站中国山水诗摇篮楠溪江 1.楠溪江宛如一幅立体的山水画。泛舟楠溪江,你会想到哪些有关山水的成语? 第二站东海明珠洞头 2.洞由 00 多个岛屿组成,宛若百颗明珠镶嵌在万顷碧波之上,以下。

16、 专题练习 综合与实践第二课时开心回顾1. 一辆观光车最多坐4个人,23个人需要准备( )辆车。2.丽丽每天晚上睡觉前要背诵成语6分钟,烧开水10分钟,泡好不烫的牛奶2分钟,喝牛奶5分钟,那丽丽在( )同时可以( ),做完这些事情最少用( )分钟。3小明给客人烧水沏茶。洗水壶要2分钟,烧开水要12分钟,洗茶杯要2分钟,拿茶叶要1分钟,为了使客人早点喝上茶,按你认为最合理的安排( )分钟就能沏茶了。4.煎三条小黄鱼至少需( )分钟,把你的想法表示出来。5.孙老师每天早晨到校后,要做这些事在办公室做清洁10分钟,到班里整理桌椅5分钟。

17、 专题练习 综合与实践第二课时开心回顾1. 一辆观光车最多坐4个人,23个人需要准备( )辆车。【答案】6辆车【解析】试题分析:遇到此类问题,除法只有进位,才能保证全部容纳。 解:234=5(辆)3(人)为保证所有人上车,剩下的3个人也要乘坐一辆车。5+1=6(辆)答:需要准备6辆车。2.丽丽每天晚上睡觉前要背诵成语6分钟,烧开水10分钟,泡好不烫的牛奶2分钟,喝牛奶5分钟,那丽丽在( )同时可以( ),做完这些事情最少用( )分钟。【答案】烧开水,背诵成语,6【解析】试题分析:查找哪些事情可以同时做,能同时做的事尽量同时做,这样。

18、 专题练习 综合与实践第一课时开心回顾1. 三个好朋友在某点进行了一场有趣的运动比赛。小张驾驶电瓶车以36km/h的速度前行,小王以10m/s的速度跑步前进,小李骑自行车每分钟通过的路程是0.6km。则( )。A小张速度最大 B小王速度最大 C小李速度最大 D三人速度一样大【答案】D【解析】试题分析:将三人的速度单位换算成统一的单位,进行比较,即可解答。 解:1km=1000m1小时=60分1分钟=60秒小张的速度是:361000(6060)=360003600=10(m/s)小李的速度是:0.6100060=60060=10(m/s)答:三个人的速度一样。故选D。2.下方说法错误的是( )。

19、综合与实践检测卷(2)1. 刘洋对本班同学及家长的交通出行方式进行了调查、整理,绘制了统计表。(1)选用()、()和()这3种交通出行方式属于绿色出行。(2)参加调查的学生中,选择绿色出行方式的人数占学生总人数的百分之几?(百分号前保留一位小数)(3)参加调查的全部人员中,选择绿色出行方式的人数占参加调查总人数的百分之几?(百分号前保留一位小数)(4)看了这份统计表,你有什么好的建议?2.暑假里,李华一家三口按计划参加了“北京五日游”。结束后,李华计算了一下,实际旅游费用比预算的5310元节省了118。(1)小华家的实际旅游费用是多少元?(2)平。

20、综合与实践检测卷(1)一、计算题。1.直接写出得数。19+23= 3.5+4.7= 1.53=3.612= 1829= 13+12=1-38= 4538= 1218=2.计算下面各题。0.4(122.5) (3.8-1.812)0.58+494 1441448137+17513 7169-71673.解方程。95=4.5x 28x=0.40.1110x=1814 54=2.7x二、填空题。1.邮政部门规定:。

【六年级上册综合实践】相关DOC文档
六年级奥数第29讲-综合推理(学)
六年级高斯学校竞赛几何综合二含答案
六年级奥数第29讲-综合推理(教)
六年级高斯学校竞赛计数综合三含答案
六年级高斯学校竞赛计算综合二含答案
六年级高斯学校竞赛数论综合三含答案
六年级高斯学校竞赛数论综合二含答案
六年级高斯学校竞赛计数综合四含答案
标签 > 六年级上册综合实践[编号:86101]