必修2 向量

,第五章 平面向量,不共线,不共线,x1y2x2y10,平面向量基本定理及其应用(典例迁移),平面向量的坐标运算(师生共研),平面向量共线的坐标表示(多维探究), 第二章 平面向量 2.2.1、2.2.2 向量加法运算及其几何意义、 向量减法运算及其几何意义 1向量的加法 (1)向量的加法 求两个向

必修2 向量Tag内容描述:

1、第二章 平面向量2.2.1、2.2.2 向量加法运算及其几何意义、向量减法运算及其几何意义1向量的加法(1)向量的加法求两个向量和的运算,叫做_(2)向量加法的三角形法则如图,已知向量,在平面上任取一点,作,则向量叫做与的和,记作,即,上述求两个向量和的作图法则,叫做向量加法的_学-科网温馨提示:当两个向量共线时,三角形法则同样适用,下图分别表示两个同向共线向量和的情形,及两个异向共线向量和的情形(3)向量加法的平行四边形法则如图,已知两个不共线的向量和,作,则、三点不共线,以、为邻边作平行四边形,则对角线上的向。

2、6.4 平面向量的应用平面向量的应用 6.4.1 平面几何中的向量方法平面几何中的向量方法 6.4.2 向量在物理中的应用举例向量在物理中的应用举例 学习目标 1.能用向量方法解决简单的几何问题.2.能用向量方法解决简单的力学问题和其 他实际问题.3.培养学生运算能力,分析和解决实际问题的能力. 知识点一 向量方法解决平面几何问题的步骤 用向量方法解决平面几何问题的“三步曲”: (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为 向量问题. (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题.。

3、2.5 向量的应用,第2章 平面向量,学习目标 1.学习用向量方法解决某些简单的平面几何问题及某些物理学中的问题. 2.体会向量是一种处理几何及物理问题的有力工具. 3.培养运算能力、分析和解决实际问题的能力.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 几何性质与向量的关系,思考1,证明线段平行、点共线及相似问题,可用向量的哪些知识?,答案 可用向量共线的相关知识: ababx1y2x2y10(b0).,答案,设a(x1,y1),b(x2,y2),a,b的夹角为.,思考2,证明垂直问题,可用向量的哪些知识?,答案 可用向量垂直的相关知识: abab0x1x2y1y。

4、2.2.2 向量的减法,第2章 2.2 向量的线性运算,学习目标 1.理解相反向量的含义,向量减法的意义及减法法则. 2.掌握向量减法的几何意义. 3.能熟练地进行向量的加、减运算.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 相反向量,思考,实数a的相反数为a,向量a与a的关系应叫做什么?,答案 相反向量.,答案,梳理,(1)定义:如果两个向量长度 ,而方向 , 那么称这两个向量是相反向量. (2)性质:对于相反向量有:a(a)0. 若a,b互为相反向量,则ab,ab0. 零向量的相反向量仍是 .,相等,相反,零向量,知识点二 向量的减法,答案,思考,根据向。

5、 2.3 平面向量的基本定理及坐标表示平面向量的基本定理及坐标表示 23.1 平面向量基本定理平面向量基本定理 学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一 组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量 的综合问题 知识点一 平面向量基本定理 1平面向量基本定理:如果 e1,e2是同一平面内的两个不共线向量,那么对。

6、2.3.2 平面向量的正交分解及坐标表示 2.3.3 平面向量的坐标运算,学习目标 1.了解平面向量的正交分解,掌握向量的坐标表示. 2.掌握两个向量和、差及数乘向量的坐标运算法则. 3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 平面向量的正交分解,思考,如果向量a与b的夹角是90,则称向量a与b垂直,记作ab.互相垂直的两个向量能否作为平面内所有向量的一组基底?,答案 互相垂直的两个向量能作为平面内所有向量的一组基底.,答案,梳理,把一个向量分解为 _的向量,叫做把向。

7、章末复习一、网络构建二、要点归纳1向量的运算:设a(x1,y1),b(x2,y2).向量运算法则(或几何意义)坐标运算向量的线性运算加法ab(x1x2,y1y2)减法ab(x1x2,y1y2)数乘(1)|a|a|;(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0a(x1,y1)向量的数量积运算ab|a|b|cos (为a与b的夹角)规定0a0,数量积的几何意义是a的模与b在a方向上的投影的积abx1x2y1y22.两个定理(1)平面向量基本定理定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1,2,使a1e12e2.基底:把不共线。

8、第2课时平面向量数量积的坐标运算学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直知识点一平面向量数量积的坐标表示若向量a(x1,y1),b(x2,y2).数量积abx1x2y1y2向量垂直abx1x2y1y20知识点二平面向量的模向量的模及两点间的距离向量模a(x,y)|a|以A(x1,y1),B(x2,y2)为端点的向量|知识点三向量的夹角设a,b都是非零向量,a(x1,y1),b(x2,y2),是a与b的夹角,则cos .。

9、3.2.2 平面的法向量与平面的向量表示学习目标:1.理解平面的法向量的概念,会求平面的法向量(重点).2.会用平面的法向量证明平行与垂直(重点).3.理解并会应用三垂线定理及其逆定理证明有关垂直问题(难点)自 主 预 习探 新 知1平面的法向量及其应用(1)平面的法向量:如果向量 n 的基线与平面 垂直,则向量 n 叫做平面 的法向量或说向量 n 与平面 正交(2)平面的向量表示式:设 A 是空间任一点,n 为空间内任一非零向量,用n 0 表述通过空间内一点并且与一个向量垂直的平面,这个式子通常称为AM 一个平面的向量表示式(3)两个平面平行或垂直的。

10、3.2.1 直线的方向向量与直线的向量方程学习目标:1.理解直线的方向向量,了解直线的向量方程(重点).2.会用向量方法证明线线、线面、面面平行(难点、易混点).3.会用向量证明两条直线垂直,求两条直线所成的角(难点)自 主 预 习探 新 知1用向量表示直线或点在直线上的位置用向量表示直线或点在直线上的位置(1)在直线 l 上给定一个定点 A 和它的一个方向向量 a,对于直线 l 上的任意一点 P,则有 ta 或 ta 或 (1t ) t ( a),上面三AP OP OA OP OA OB AB 个向量等式都叫做空间直线的向量参数方程向量 a 称为该直线的方向向量(2)线段 AB 的中点。

11、高一高二数学(必修4)百强校分项汇编同步题库专题04 平面向量的基本运算与平面向量基本定理一、选择题1【福建省福州市2017-2018学年高一下学期期末质量检测】如图,在的内部,为的中点,且,则的面积与的面积的比值为( )来源:A 3 B 4 C 5 D 6【答案】B【解析】D为AB的中点,O是CD的中点,SAOC=SAOD=SAOB=SABC,故选:B2【云南省宣威五中2017-2018学年高一下学期期末】在中,点在线段上,且若,则( )A B C D 【答案】B【解析】因为,所以 ,从而,故选B.3【江西省宜春市樟树中017-2018学年高一下学期第三次月考】如图,在66的方格纸中,。

12、2.1.5 向量共线的条件与轴上向量坐标运算,第二章 2.1 向量的线性运算,学习目标 1.理解平行向量基本定理,能熟练运用该定理处理向量共线和三点共线问题. 2.理解轴上向量坐标的含义及运算. 3.能运用轴上向量的坐标及长度公式进行相关的计算.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 平行向量基本定理,思考,若b与非零向量a共线,是否存在满足ba?若b与向量a共线呢?,答案 若b与非零向量a共线,存在满足ba; 若b与向量a共线,当a0,b0时,不存在满足ba.,答案,梳理,(1)平行向量基本定理:如果ab,则 ;反之,如果ab,且 ,则一。

13、第2课时 平面向量数量积的坐标运算,第2章 2.4 向量的数量积,学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算. 2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式. 3.能根据向量的坐标求向量的夹角及判定两个向量垂直.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 平面向量数量积的坐标表示,思考1,ii,jj,ij分别是多少?,答案 ii11cos 01,jj11cos 01,ij0.,答案,设i,j是两个互相垂直且分别与x轴、y轴的正半轴同向的单位向量.,思考2,取i,j为坐标平面内的一组基。

14、第2课时向量平行的坐标表示学习目标1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法知识点向量平行的坐标表示1向量平行的坐标表示(1)条件:a(x1,y1),b(x2,y2),a0.(2)结论:如果ab,那么x1y2x2y10;如果x1y2x2y10,那么ab.2若,则P与P1,P2三点共线(1)当(0,)时,P位于线段P1,P2的内部,特别地,当1时,P为线段P1P2的中点(2)当(,1)时,P在线段P1P2的延长线上(3)当(1,0)时,P在线段P1P2的反向延长线上1若向量a(x1,y1),b(x2,y2),且ab,则.()提示当y1y20时不成立2若向量a。

15、第2课时 向量平行的坐标表示,第2章 2.3.2 平面向量的坐标运算,学习目标 1.理解用坐标表示的平面向量共线的条件. 2.能根据平面向量的坐标,判断向量是否共线. 3.掌握三点共线的判断方法.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 向量平行的坐标表示,思考1,上面几组向量中,a,b有什么关系?,答案 (1)(2)中b2a,,答案,已知下列几组向量: (1)a(0,3),b(0,6); (2)a(2,3),b(4,6); (3)a(1,4),b(3,12);,(3)中b3a,,(4)中ba.,思考2,以上几组向量中,a,b共线吗?,答案 共线.,答案,思考3,当ab时,a,b的坐标成比例吗?,。

16、章末检测试卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若(1,2),(1,1),则等于()A(2,3) B(0,1) C(1,2) D(2,3)答案D解析(1,2),(1,1),所以(11,12)(2,3)2设e1,e2为基底向量,已知向量e1ke2,2e1e2,3e13e2,若A,B,D三点共线,则k的值是()A2 B3 C2 D3答案A解析易知e12e2(e12e2),又A,B,D三点共线,则,则k2,故选A.3已知A(2,3),(3,2),则点B和线段AB的中点M坐标分别为()AB(5,5),M(0,0) BB(5,5),MCB(1,1),M(0,0) DB(1,1),M答案B解析(2,3)(3,2)(5,5),AB中点M.4已知有向线段,不。

17、章末复习课,第2章 平面向量,学习目标 1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征. 2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质. 3.体会应用向量解决问题的基本思想和基本方法. 4.进一步理解向量的“工具”性作用.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.向量的运算:设a(x1,y1),b(x2,y2).,三角形,(x1x2,y1y2),平行四边形,三角形,(x1x2,y1y2),(x1,y1),相同,相反,x1x2y1y2,2.两个定理 (1)平面向量基本定理 定理:如果e1,e2是同一平面内的两个 向量,那么对于这一平面内的 向量a, 实数1。

18、第第 2 2 课时课时 共线向量与共面向量共线向量与共面向量 1已知向量 a,b,且AB a2b,BC5a6b,CD 7a2b,则一定共线的三点是( ) AA,B,D BA,B,C CB,C,D DA,C,D 答案 A 解析 因为AD AB BCCD 3a6b3(a2b)3AB , 故AD AB , 又AD 与AB 有公共点A, 所以 A,B,D 三点共线 2对于空间的任意三个向量 a,b,2a。

19、第第 2 2 课时课时 共线向量与共面向量共线向量与共面向量 学习目标 1.理解向量共线、向量共面的定义.2.掌握共线向量定理和共面向量定理,会证明 空间三点共线、四点共面 知识点一 共线向量 1空间两个向量共线的充要条件 对于空间任意两个向量 a,b(b0),ab 的充要条件是存在实数 ,使 ab. 2直线的方向向量 在直线 l 上取非零向量 a,我们把与向量 a 平行的非零向量称为直线 l 。

【必修2 向量】相关PPT文档
【必修2 向量】相关DOC文档
第2章 平面向量 章末复习学案(含答案)
标签 > 必修2 向量[编号:163240]