北师大版九年级下册数学3.1 圆1教案

3.4 圆周角和圆心角的关系圆周角和圆心角的关系 第第 1 课时课时 圆周角和圆心角的关系圆周角和圆心角的关系 1理解圆周角的概念,掌握圆周角的 两个特征、定理的内容及简单应用;(重点) 2能运用圆周角定理及其推论进行简 单的证明计算(难点) 一、情境导入 在下图中,当球员在 B, D, E 处射门

北师大版九年级下册数学3.1 圆1教案Tag内容描述:

1、3.4 圆周角和圆心角的关系圆周角和圆心角的关系 第第 1 课时课时 圆周角和圆心角的关系圆周角和圆心角的关系 1理解圆周角的概念,掌握圆周角的 两个特征、定理的内容及简单应用;(重点) 2能运用圆周角定理及其推论进行简 单的证明计算(难点) 一、情境导入 在下图中,当球员在 B, D, E 处射门时, 他所处的位置对球门 AC 分别形成三个张角 ABC, ADC,AEC.这三个角的大小 有什么关系? 二、合作探究 探究点:圆周角定理及其推论 【类型一】 利用圆周角定理求角的度 数 如图,已知 CD 是O 的直径, 过点 D 的弦 DE 平行于半径 OA,若D 的 度。

2、3.4 圆周角和圆心角的关系圆周角和圆心角的关系 第第 2 课时课时 圆周角和直径的关系及圆内接四边形圆周角和直径的关系及圆内接四边形 1掌握圆周角和直径的关系,会熟练 运用解决问题;(重点) 2培养学生观察、分析及理解问题的 能力,经历猜想、推理、验证等环节,获得 正确的学习方式(难点) 一、情境导入 你喜欢看足球比赛吗?你踢过足球 吗? 如图所示, 甲队员在圆心 O 处, 乙队 员在圆上 C 处, 丙队员带球突破防守到圆上 C 处,依然把球传给了甲,你知道为什么 吗?你能用数学知识解释一下吗? 二、合作探究 探究点一:圆周角和直径。

3、(北师大版)九年级下单元提升测试卷:第 三 章圆一选择题1已知两圆半径分别为 2 和 3,圆心距为 d,若两圆没有公共点,则下列结论正确的是( )A 0d1 Bd5 C0d1 或 d5 D0d1 或 d52如图,AC 是O 的直径,弦 BDAO 于 E,连接 BC,过点 O 作OFBC 于 F,若 BD=8cm,AE=2cm,则 OF 的长度是( )A 3cm B cm C2.5cm D cm3已知圆柱的底面半径为 3cm,母线长为 6cm,则圆柱的侧面积是( )A 36cm2 B36 cm 2 C18cm 2 D18 cm 24如图,点 B,C,D 在O 上,若BCD=130,则BOD 的度数是( )A 50 B60 C80 D1005如图,O 的半径 OA=6,以 A 为圆心,OA 为。

4、3.6 直线和圆的位置关系,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,第1课时 直线和圆的位置关系及切线的性质,北师大版九年级下册数学教学课件,1.理解直线与圆有相交、相切、相离三种位置关系. 2.能根据圆心到直线的距离d和圆的半径r之间的数量关系,判断出直线与圆的位置关系.(重点) 3.理解并掌握圆的切线的性质定理.(重点),学习目标,点和圆的位置关系有几种?,dr,d=r,dr,用数量关系如何来 判断呢?,点在圆内,点在圆上,点在圆外,(令OP=d ),导入新课,导入新课,观赏视频,问题1 如果我们把太阳看成一个圆,地平线看成一条直线,那你。

5、2.4 二次函数的应用二次函数的应用 第第 2 课时课时 商品利润最大问题商品利润最大问题 1应用二次函数解决实际问题中的最 值问题;(重点) 2应用二次函数解决实际问题,要能 正确分析和把握实际问题的数量关系, 从而 得到函数关系,再求最值(难点) 一、情境导入 某商店经营 T 恤衫, 已知成批购进时单 价是 25 元根据市场调查,销售量与销售 单价满足如下关系:在一段时间内,单价是 135 元时,销售量是 500 件,而单价每降低 10 元, 就可以多售出 200 件 请你帮忙分析, 销售单价是多少时,可以获利最多? 二、合作探究 探究点一:商品。

6、1.4 1.4 解直角三角形解直角三角形 1正确运用直角三角形中的边角关系 解直角三角形;(重点) 2选择适当的关系式解直角三角 形(难点) 一、情境导入 如图, 美丽的徒骇河宛如一条玉带穿城 而过, 沿河两岸的滨河大道和风景带成为该 市的一道新景观在数学课外实践活动中, 小亮在河西岸滨河大道一段 AC 上的 A,B 两点处, 利用测角仪分别对东岸的观景台 D 进行了测量,分别测得DAC60, DBC75.又已知 AB100 米,根据以上 条件你能求出观景台D到徒骇河西岸AC的 距离吗? 二、合作探究 探究点:解直角三角形 【类型一】 利用解直角三角形求边或 。

7、2.3 确定二次函数的表达式确定二次函数的表达式 1通过对用待定系数法求二次函数表 达式的探究,掌握求表达式的方法;(重点) 2 能灵活根据条件恰当地选择表达式, 体会二次函数表达式之间的转化(难点) 一、情境导入 一副眼镜镜片的下半部分轮廓对应的 两条抛物线关于 y 轴对称, 如图 ABx 轴, AB4cm, 最低点 C 在 x 轴上, 高 CH1cm, BD2cm.你能确定右轮廓线 DFE 所在抛物 线的函数解析式吗? 二、合作探究 探究点: 用待定系数法确定二次函数解 析式 【类型一】 已知顶点坐标确定二次函 数解析式 已知抛物线的顶点坐标为 M(1, 2),且。

8、1.1 锐角三角函数锐角三角函数 第第 2 课时课时 正弦与余弦正弦与余弦 1理解正弦与余弦的概念;(重点) 2能用正弦、余弦的知识,根据三角 形中已知的边和角求出未知的边和角(难 点) 一、情境导入 如图,小明沿着某斜坡向上行走了 13m,他的相对位置升高了 5m. 如果他沿着该斜坡行走了 20m, 那么他 的相对位置升高了多少?行走了 am 呢? 在上述情形中, 小明的位置沿水平方向 又分别移动了多少? 根据相似三角形的性质可知, 当直角三 角形的一个锐角的大小确定时, 它的对边与 斜边的比值、邻边与斜边的比值也就确定 了 二、合作探究 探。

9、1.3 三角函数的计算三角函数的计算 1熟练掌握用科学计算器求三角函数 值;(重点) 2初步理解仰角和俯角的概念及应 用(难点) 一、情境导入 如图和图,将一个 RtABC 形状 的楔子从木桩的底端点 P 沿水平方向打入 木桩底下,可以使木桩向上运动如果楔子 斜面的倾斜角为 10, 楔子沿水平方向前进 5cm(如箭头所示)那么木桩上升多少厘 米? 观察图易知, 当楔子沿水平方向前进 5cm,即 BN5 cm 时,木桩上升的距离为 PN. 在 Rt PBN 中,tan10PN BN, PNBNtan105tan10(cm) 那么,tan10等于多少呢? 对于不是 30, 45, 60这些特殊角 的三角函数值,。

10、1.6 利用三角函数测高利用三角函数测高 1经历运用仪器进行实地测量以及撰 写活动报告的过程, 能够对所得到的数据进 行分析;(重点) 2能综合应用直角三角形的边角关系 的知识解决实际问题(难点) 一、情境导入 如图所示, 站在离旗杆 BE 底部 10 米处 的 D 点,目测旗杆的顶部,视线 AB 与水平 线的夹角BAC 为 34, 并已知目高 AD 为 1.5 米 现在若按 1500 的比例将ABC 画 在纸上,并记为ABC,用刻度直尺量出 纸上 BC的长度,便可以算出旗杆的实际高 度你知道计算的方法吗? 实际上, 我们利用图中已知的数据就 可以直接计算旗杆的高度, 。

11、1.5 三角函数的应用三角函数的应用 1通过生活中的实际问题体会锐角三 角函数在解决问题过程中的作用;(重点) 2能够建立数学模型,把实际问题转 化为数学问题(难点) 一、情境导入 为倡导“低碳生活”, 人们常选择自行 车作为代步工具, 图所示的是一辆自行车 的实物图 图是这辆自行车的部分几何示 意图,其中车架档 AC 与 CD 的长分别为 45cm 和 60cm,且它们互相垂直,座杆 CE 的长为 20cm.点 A、C、E 在同一条直线上, 且CAB75. 你能求出车架档 AD 的长吗? 二、合作探究 探究点:三角函数的应用 【类型一】 利用方向角解决问题 某船以。

12、1 11 1 锐角三角函数锐角三角函数 第第 1 1 课时课时 正切与坡度正切与坡度 1 理解正切的意义, 并能举例说明; (重 点) 2能够根据正切的概念进行简单的计 算;(重点) 3能运用正切、坡度解决问题(难点) 一、情境导入 观察与思考: 某体育馆为了方便不同需求的观众, 设 计了不同坡度的台阶 问题 1:图中的台阶哪个更陡?你是 怎么判断的? 问题 2:如何描述图中台阶的倾斜程 度?除了用A 的大小来描述,还可以用什 么方法? 方法一:通过测量 BC 与 AC 的长度算 出它们的比,来说明台阶的倾斜程度; 方法二: 在台阶斜坡上另找一点 B1, 。

13、3.6 直线和圆的位置关系直线和圆的位置关系 第第 1 课时课时 直线和圆的位置关系及切线的性质直线和圆的位置关系及切线的性质 1理解直线和圆的相交、相切、相离 三种位置关系;(重点) 2掌握直线和圆的三种位置关系的判 定方法; (难点) 3掌握切线的性质定理,会用切线的 性质解决问题(重点) 一、情境导入 在纸上画一条直线, 把硬币的边缘看作 圆,在纸上移动硬币,你能发现直线与圆的 公共点个数的变化情况吗?公共点个数最 少时有几个?最多时有几个? 二、合作探究 探究点一:直线和圆的位置关系 【类型一】 判定直线和圆的位置关系 已。

14、3.2 圆的对称性,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.掌握圆是轴对称图形及圆的中心对称性和旋转不变性. 2.探索圆心角、弧、弦之间关系定理并利用其解决相关问题.(重点) 3.理解圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的意义.(难点),学习目标,熊宝宝要过生日了!要把蛋糕平均分成四块,你会分吗?,情境引入,导入新课,讲授新课,问题1 圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?,问题2 你是怎么得出结论的?,圆的对称性: 圆是轴对称图形,其对称轴。

15、2.1 二次函数二次函数 1理解、掌握二次函数的概念和一般 形式;(重点) 2会利用二次函数的概念解决问题; (重点) 3列二次函数表达式解决实际问 题(难点) 一、情境导入 已知长方形窗户的周长为 6m,窗户面 积为 y m2,窗户宽为 x m,你能写出 y 与 x 之间的函数关系式吗?它是什么函数呢? 二、合作探究 探究点一:二次函数的概念 【类型一】 二次函数的识别 下列函数中是二次函数的有 ( ) yx1 x;y3(x1) 22;y(x 3)22x2;y 1 x2x. A4 个 B3 个 C2 个 D1 个 解析:yx1 x,y 1 x2x 的右边 不是整式,故不是二次函数;y3(x 1)22,符合二次函数。

16、3.5 确定圆的条件,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.复习并巩固圆中的基本概念. 2.理解并掌握三点确定圆的条件并会应用. (重点) 3.理解并掌握三角形的外接圆及外心的概念.(难点),学习目标,导入新课,情境引入,假如旋转木马真如短片所说,是中国发明的,你能将旋转木马破碎的圆形底座还原,以帮助考古学家画进行深入的研究吗?,要确定一个圆必须满足几个条件?,问题1 构成圆的基本要素有那些?,导入新课,复习与思考,o,r,两个条件:,圆心,半径,那么我们又该如何画圆呢?,问题2 过一点可以作几。

17、*3.3 垂径定理垂径定理 1理解垂径定理和推论的内容,并会 证明,利用垂径定理解决与圆有关的问题; (重点) 2利用垂径定理及其推论解决实际问 题(难点) 一、情境导入 如图某公园中央地上有一些大理石 球,小明想测量球的半径,于是找了两块厚 20cm 的砖塞在球的两侧(如图所示), 他量 了下两砖之间的距离刚好是 80cm,聪明的 你能算出大石头的半径吗? 二、合作探究 探究点一:垂径定理 【类型一】 利用垂径定理求直径或弦 的长度 如图所示, O 的直径 AB 垂直弦 CD 于点 P,且 P 是半径 OB 的中点,CD 6cm,则直径 AB 的长是( ) A2 3cm B3。

18、3.2 圆的对称性圆的对称性 1理解圆的旋转不变性;(重点) 2掌握圆心角、弧、弦之间相等关系 的定理;(重点) 3能应用圆心角、弧、弦之间的关系 解决问题(难点) 一、情境导入 我们知道圆是一个旋转对称图形, 无论 绕圆心旋转多少度,它都能与自身重合,对 称中心即为其圆心将图中的扇形 AOB(阴 影部分)绕点 O 逆时针旋转某个角度,画出 旋转之后的图形,比较前后两个图形,你能 发现什么? 二、合作探究 探究点:圆心角、弧、弦之间的关系 【类型一】 利用圆心角、弧、弦之间 的关系证明线段相等 如图, M为O上一点, MA MB , MDOA 于 D,M。

19、3.5 确定圆的条件确定圆的条件 1理解平面内确定一个圆的条件,掌 握经过不在同一直线上三个点作圆的方法; (重点) 2理解三角形的外接圆、三角形外心 等概念;(重点) 3利用三角形外心解决实际问题(难 点) 一、情境导入 经过一点可以作无数条直线 经过两点 只能作一条直线那么经过一点能作几个 圆?经过两点、三点呢? 二、合作探究 探究点一:确定圆的条件 【类型一】 判断确定圆的条件 下列关于确定一个圆的说法中, 正确的是( ) A三个点一定能确定一个圆 B以已知线段为半径能确定一个圆 C以已知线段为直径能确定一个圆 D菱形的四个顶点能。

20、3.1 圆圆 1 理解确定圆的条件及圆的表示方法; (重点) 2掌握圆的基本元素的概念;(重点) 3掌握点和圆的三种位置关系(难点) 一、情境导入 古希腊的数学家认为: “一切立体图形 中最美的是球形, 一切平面图形中最美的是 圆形”它的完美来自于中心对称,无论处 于哪个位置,都具有同一形状,它最谐调、 最匀称观察图形,从中找到共同特点 二、合作探究 探究点一:圆的有关概念 【类型一】 圆的有关概念 下列说法中,错误的是( ) A直径相等的两个圆是等圆 B长度相等的两条弧是等弧 C圆中最长的弦是直径 D一条弦把圆分成两条弧,这两条弧 可。

【北师大版九年级下册数学3.1】相关PPT文档
【北师大版九年级下册数学3.1】相关DOC文档
北师大版九年级下册数学《3.1 圆1》教案
标签 > 北师大版九年级下册数学3.1 圆1教案[编号:101487]