3.1 找规律,1.结合具体情境,探索乘数是整十数的乘法计算。 2.能熟练进行乘数是整十数的乘法计算,并能解决一些简单的实际问题。,学习目标,51,510,5010,32,320,3020,124,1240,12040,5,50,500,6,60,600,48,480,4800,0,0,0,0,00
北师大版九年级下册数学3.1 圆课件Tag内容描述:
1、3.1 找规律,1.结合具体情境,探索乘数是整十数的乘法计算。 2.能熟练进行乘数是整十数的乘法计算,并能解决一些简单的实际问题。,学习目标,51,510,5010,32,320,3020,124,1240,12040,5,50,500,6,60,600,48,480,4800,0,0,0,0,00,0,0,0,0,00,0,0,0,0,00,探索新知,63,154,182,630,1540,1820,6030,15040,18020,18,180,1800,60,600,6000,36,360,3600,0,00,探索新知,1630,16030,480,4800,1603,16300,480,4800,探索新知,1.算一算,照样子再写出一组算式。,24 240 24。
2、3.6 直线和圆的位置关系直线和圆的位置关系 第第 1 课时课时 直线和圆的位置关系及切线的性质直线和圆的位置关系及切线的性质 1理解直线和圆的相交、相切、相离 三种位置关系;(重点) 2掌握直线和圆的三种位置关系的判 定方法; (难点) 3掌握切线的性质定理,会用切线的 性质解决问题(重点) 一、情境导入 在纸上画一条直线, 把硬币的边缘看作 圆,在纸上移动硬币,你能发现直线与圆的 公共点个数的变化情况吗?公共点个数最 少时有几个?最多时有几个? 二、合作探究 探究点一:直线和圆的位置关系 【类型一】 判定直线和圆的位置关系 已。
3、2.3 确定二次函数的表达式,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.会用待定系数法求二次函数的表达式.(难点) 2.会根据待定系数法解决关于二次函数的相关问题.(重点),导入新课,复习引入,1.一次函数y=kx+b(k0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?,2.求一次函数表达式的方法是什么?它的一般步骤是什么?,2个,2个,待定系数法,(1)设:(表达式) (2)代:(坐标代入) (3)解:方程(组) (4)还原:(写表达式),讲授新课,典例精析,例1.已知二次函数yax2 c的图象经过。
4、1 分数乘法(一),1,学习目标,1.探索并理解分数乘法的意义。 2.探索并掌握分数乘整数的计算方法,能正确计算。 3.能解决简单的分数乘整数的实际问题。,2,1个 占占整张纸条的 ,3个 占整张纸条的几分之几?,情境导入,3,3,3,探索新知,4,2个 的和是多少?下面的算法你看懂了吗?与同伴说一说。,探索新知,2个 一共是6个 。,5,算一算,说一说分数与整数相乘如何计算。,探索新知,6,4个 是多少?涂一涂,算一算。,探索新知,7,填一填,与同伴交流为什么可以这样计算。,9,4,2,9,8,11,3,2,11,6,探索新知,8,一个漏水的水龙头每时漏水 桶,5时漏水多少。
5、2.1 二次函数二次函数 1理解、掌握二次函数的概念和一般 形式;(重点) 2会利用二次函数的概念解决问题; (重点) 3列二次函数表达式解决实际问 题(难点) 一、情境导入 已知长方形窗户的周长为 6m,窗户面 积为 y m2,窗户宽为 x m,你能写出 y 与 x 之间的函数关系式吗?它是什么函数呢? 二、合作探究 探究点一:二次函数的概念 【类型一】 二次函数的识别 下列函数中是二次函数的有 ( ) yx1 x;y3(x1) 22;y(x 3)22x2;y 1 x2x. A4 个 B3 个 C2 个 D1 个 解析:yx1 x,y 1 x2x 的右边 不是整式,故不是二次函数;y3(x 1)22,符合二次函数。
6、3.2 圆的对称性,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,1.掌握圆是轴对称图形及圆的中心对称性和旋转不变性. 2.探索圆心角、弧、弦之间关系定理并利用其解决相关问题.(重点) 3.理解圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的意义.(难点),学习目标,熊宝宝要过生日了!要把蛋糕平均分成四块,你会分吗?,情境引入,导入新课,讲授新课,问题1 圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?,问题2 你是怎么得出结论的?,圆的对称性: 圆是轴对称图形,其对称轴是任意一条过圆心的直线.,用折叠。
7、1.3 三角函数的计算,导入新课,讲授新课,当堂练习,课堂小结,第一章 直角三角形的边角关系,北师大版九年级下册数学教学课件,1.复习并巩固锐角三角函数的相关知识. 2.学会利用计算器求三角函数值并进行相关计算. (重点) 3.学会利用计算器根据三角函数值求锐角度数并计算.(难点),学习目标,导入新课,回顾与思考,30、45、60角的正弦值、余弦值和正切值如下表:,三角 函数,问题: 如图,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶的路线与水平面的夹角为=16,那么缆车垂直上升的距离是多少?(结果精确到0.01m),问题: 如图。
8、*3.3 垂径定理垂径定理 1理解垂径定理和推论的内容,并会 证明,利用垂径定理解决与圆有关的问题; (重点) 2利用垂径定理及其推论解决实际问 题(难点) 一、情境导入 如图某公园中央地上有一些大理石 球,小明想测量球的半径,于是找了两块厚 20cm 的砖塞在球的两侧(如图所示), 他量 了下两砖之间的距离刚好是 80cm,聪明的 你能算出大石头的半径吗? 二、合作探究 探究点一:垂径定理 【类型一】 利用垂径定理求直径或弦 的长度 如图所示, O 的直径 AB 垂直弦 CD 于点 P,且 P 是半径 OB 的中点,CD 6cm,则直径 AB 的长是( ) A2 3cm B3。
9、3.5 确定圆的条件,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,1.复习并巩固圆中的基本概念. 2.理解并掌握三点确定圆的条件并会应用. (重点) 3.理解并掌握三角形的外接圆及外心的概念.(难点),学习目标,导入新课,情境引入,假如旋转木马真如短片所说,是中国发明的,你能将旋转木马破碎的圆形底座还原,以帮助考古学家画进行深入的研究吗?,要确定一个圆必须满足几个条件?,问题1 构成圆的基本要素有那些?,导入新课,复习与思考,o,r,两个条件:,圆心,半径,那么我们又该如何画圆呢?,问题2 过一点可以作几条直线?,问题3 过几点可以确定一。
10、3.6 直线和圆的位置关系,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,第1课时 直线和圆的位置关系及切线的性质,北师大版九年级下册数学教学课件,1.理解直线与圆有相交、相切、相离三种位置关系. 2.能根据圆心到直线的距离d和圆的半径r之间的数量关系,判断出直线与圆的位置关系.(重点) 3.理解并掌握圆的切线的性质定理.(重点),学习目标,点和圆的位置关系有几种?,dr,d=r,dr,用数量关系如何来 判断呢?,点在圆内,点在圆上,点在圆外,(令OP=d ),导入新课,导入新课,观赏视频,问题1 如果我们把太阳看成一个圆,地平线看成一条直线,那你。
11、(北师大版)九年级下单元提升测试卷:第 三 章圆一选择题1已知两圆半径分别为 2 和 3,圆心距为 d,若两圆没有公共点,则下列结论正确的是( )A 0d1 Bd5 C0d1 或 d5 D0d1 或 d52如图,AC 是O 的直径,弦 BDAO 于 E,连接 BC,过点 O 作OFBC 于 F,若 BD=8cm,AE=2cm,则 OF 的长度是( )A 3cm B cm C2.5cm D cm3已知圆柱的底面半径为 3cm,母线长为 6cm,则圆柱的侧面积是( )A 36cm2 B36 cm 2 C18cm 2 D18 cm 24如图,点 B,C,D 在O 上,若BCD=130,则BOD 的度数是( )A 50 B60 C80 D1005如图,O 的半径 OA=6,以 A 为圆心,OA 为。
12、2.1 二次函数,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.理解掌握二次函数的概念和一般形式.(重点) 2.会利用二次函数的概念解决问题. 3.会列二次函数表达式解决实际问题.(难点),导入新课,情景引入,里约奥运会上,哪位奥运健儿给你留下了深刻的印象?你能猜出下面表情包是谁吗?,你们是根据哪些特征猜出的呢?,下面来看傅园慧在里约奥运会赛后的采访视频,注意前方高能表情包.,通过表情包来辨别人物,最重要的是根据个人的特征,那么数学的特征是什么呢?,“数学根本上是玩概念的,不是。
13、*3.7 切线长定理,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,北师大版九年级下册数学教学课件,1.理解切线长的概念; 2.掌握切线长定理,初步学会运用切线长定理进行计算与证明.(重点),学习目标,问题1 通过前面的学习,我们了解到如何过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢? 问题2 过圆外一点P作圆的切线,可以作几条?请欣赏小颖同学的作法(如右下图所示)!,直径所对的圆周角是直角.,导入新课,1.切线长的定义: 经过圆外一点作圆的切线,这点和切点之间的线段的长叫作切线长,A,O,切。
14、*3.3 垂径定理,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,1.进一步认识圆,了解圆是轴对称图形. 2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.(重点) 3.灵活运用垂径定理解决有关圆的问题.(难点),学习目标,问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m, 拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?,导入新课,情境引入,问题:如图,AB是O的一条弦, 直径CDAB, 垂足为P.你能发现图中有哪些相等的线段和劣弧? 为什么?,线段: AP=BP,O,A,B,D,P,C,。
15、3.2 圆的对称性圆的对称性 1理解圆的旋转不变性;(重点) 2掌握圆心角、弧、弦之间相等关系 的定理;(重点) 3能应用圆心角、弧、弦之间的关系 解决问题(难点) 一、情境导入 我们知道圆是一个旋转对称图形, 无论 绕圆心旋转多少度,它都能与自身重合,对 称中心即为其圆心将图中的扇形 AOB(阴 影部分)绕点 O 逆时针旋转某个角度,画出 旋转之后的图形,比较前后两个图形,你能 发现什么? 二、合作探究 探究点:圆心角、弧、弦之间的关系 【类型一】 利用圆心角、弧、弦之间 的关系证明线段相等 如图, M为O上一点, MA MB , MDOA 于 D,M。
16、3.5 确定圆的条件确定圆的条件 1理解平面内确定一个圆的条件,掌 握经过不在同一直线上三个点作圆的方法; (重点) 2理解三角形的外接圆、三角形外心 等概念;(重点) 3利用三角形外心解决实际问题(难 点) 一、情境导入 经过一点可以作无数条直线 经过两点 只能作一条直线那么经过一点能作几个 圆?经过两点、三点呢? 二、合作探究 探究点一:确定圆的条件 【类型一】 判断确定圆的条件 下列关于确定一个圆的说法中, 正确的是( ) A三个点一定能确定一个圆 B以已知线段为半径能确定一个圆 C以已知线段为直径能确定一个圆 D菱形的四个顶点能。
17、3.2 圆的对称性,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.掌握圆是轴对称图形及圆的中心对称性和旋转不变性. 2.探索圆心角、弧、弦之间关系定理并利用其解决相关问题.(重点) 3.理解圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的意义.(难点),学习目标,熊宝宝要过生日了!要把蛋糕平均分成四块,你会分吗?,情境引入,导入新课,讲授新课,问题1 圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?,问题2 你是怎么得出结论的?,圆的对称性: 圆是轴对称图形,其对称轴。
18、3.5 确定圆的条件,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.复习并巩固圆中的基本概念. 2.理解并掌握三点确定圆的条件并会应用. (重点) 3.理解并掌握三角形的外接圆及外心的概念.(难点),学习目标,导入新课,情境引入,假如旋转木马真如短片所说,是中国发明的,你能将旋转木马破碎的圆形底座还原,以帮助考古学家画进行深入的研究吗?,要确定一个圆必须满足几个条件?,问题1 构成圆的基本要素有那些?,导入新课,复习与思考,o,r,两个条件:,圆心,半径,那么我们又该如何画圆呢?,问题2 过一点可以作几。
19、3.1 圆,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,1.认识圆,理解圆的本质属性.(重点) 2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.(难点) 3.初步了解点与圆的位置关系.,学习目标,导入新课,观察与思考,观察下列生活中的图片,找一找你所熟悉的图形.,情境引入,一些学生正在做投圈游戏,他们呈“一”字排开这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?,讲授新课,r,O,A,问题 观察画圆的过程,你能说出圆是如何画出来的吗?,圆的旋转定义,在一个平面内,线。
20、3.1 圆圆 1 理解确定圆的条件及圆的表示方法; (重点) 2掌握圆的基本元素的概念;(重点) 3掌握点和圆的三种位置关系(难点) 一、情境导入 古希腊的数学家认为: “一切立体图形 中最美的是球形, 一切平面图形中最美的是 圆形”它的完美来自于中心对称,无论处 于哪个位置,都具有同一形状,它最谐调、 最匀称观察图形,从中找到共同特点 二、合作探究 探究点一:圆的有关概念 【类型一】 圆的有关概念 下列说法中,错误的是( ) A直径相等的两个圆是等圆 B长度相等的两条弧是等弧 C圆中最长的弦是直径 D一条弦把圆分成两条弧,这两条弧 可。