第 1 页 共 4 页 二元一次方程组解法二元一次方程组解法代入法代入法(提高提高)知识讲解知识讲解 【学习目标】【学习目标】 1. 理解消元的思想; 2. 会用代入法解二元一次方程组. 【要点梳理】【要点梳理】 要点一、要点一、消元法消元法 1.1.消元思想:消元思想:二元一次方程组中有两个未知数
北京四中七年级上册数学二次根式的加减基础知识讲解Tag内容描述:
1、第 1 页 共 4 页 二元一次方程组解法二元一次方程组解法代入法代入法(提高提高)知识讲解知识讲解 【学习目标】【学习目标】 1. 理解消元的思想; 2. 会用代入法解二元一次方程组. 【要点梳理】【要点梳理】 要点一、要点一、消元法消元法 1.1.消元思想:消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二 元一次方程组转化为我们熟悉的一元一次方程, 我们就可以先求出一个未知数, 然后再求出 另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想. 2.2.消元的基本思路:消元的基本思路:未。
2、第 1 页 共 4 页 二元一次方程二元一次方程(组组)的相关概念的相关概念(提高提高)知识讲解知识讲解 【学习目标】【学习目标】 1.理解二元一次方程、二元一次方程组及它们的解的含义; 2.会检验一组数是不是某个二元一次方程(组)的解. 【要点梳理】【要点梳理】 要点一、要点一、二元一次方程二元一次方程 含有两个未知数, 并且含有未知数的项的次数都是 1 像这样的方程叫做二元一次方程 要点诠释:要点诠释:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数, “二元”就是指方程中有且只有两个未知数. (2) “未知。
3、 第 1 页 共 10 页 二元一次方程组二元一次方程组全章复习与巩固全章复习与巩固(基础)(基础)知识讲解知识讲解 【学习目标】【学习目标】 1.了解二元一次方程(组)的有关概念,会解简单的(数字系数) ;能根据具体问题中的数 量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性. 2.二元一次方程组的图像解法,初步体会方程与函数的关系. 3.了解解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问 题为简单问题的划归思想. 【知识网络】【知识网络】 【要点梳理】【要点梳理】 要要点一、。
4、第 1 页 共 3 页 二元一次方程组解法二元一次方程组解法(一)(一)-代入法代入法(基础基础)知识讲解知识讲解 【学习目标】【学习目标】 1. 理解消元的思想; 2. 会用代入法解二元一次方程组. 【要点梳理】【要点梳理】 要点一、要点一、消元法消元法 1.1.消元思想:消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二 元一次方程组转化为我们熟悉的一元一次方程, 我们就可以先求出一个未知数, 然后再求出 另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想. 2.2.消元的基本思路:消元的。
5、第 1 页 共 5 页 二元一次方程(组)二元一次方程(组)与一次与一次函数函数(基础)(基础) 【学习目标】【学习目标】 1.理解二元一次方程与一次函数的关系; 2.能根据一次函数的图象求二元一次方程组的近似解; 3.能利用二元一次方程组确定一次函数的表达式. 【要点梳理】【要点梳理】 要要点一、点一、二二元一次方程与元一次方程与一次函数的关系一次函数的关系 1. 任 何 一 个 二 元 一 次 方 程(0,)axbyc abc、为常数都 可 以 变 形 为 -(0,) ac yxabc bb 、为常数即为一个一次函数, 所以每个二元一次方程都对应一个一 次函数. 2。
6、 第 1 页 共 4 页 二元一次方程组解法二元一次方程组解法(提高提高)知识讲解知识讲解 【学习目标】【学习目标】 1. 掌握加减消元法解二元一次方程组的方法; 2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组; 3会对一些特殊的方程组进行特殊的求解 【要点梳理】【要点梳理】 要点一、要点一、加减消元法解二元一次方程组加减消元法解二元一次方程组 两个二元一次方程中同一未知数的系数相反或相等时, 将两个方程的两边分别相加或相 减, 就能消去这个未知数, 得到一个一元一次方程, 这种方法叫做加减消元法, 简称加减法 。
7、第 1 页 共 4 页 二元一次方程二元一次方程(组组)的相关概念的相关概念(基础基础)知识讲解知识讲解 【学习目标】【学习目标】 1.理解二元一次方程、二元一次方程组及它们的解的含义; 2.会检验一组数是不是某个二元一次方程(组)的解. 【要点梳理】【要点梳理】 要点一、要点一、二元一次方程二元一次方程 含有两个未知数, 并且含有未知数的项的次数都是 1, 像这样的方程叫做二元一次方程 要点诠释:要点诠释:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数, “二元”就是指方程中有且只有两个未知数. (2) “未。
8、 第 1 页 共 4 页 二元一次方程组解法二元一次方程组解法(二)(二)-加减法加减法(基础基础)知识讲解知识讲解 【学习目标】【学习目标】 1. 掌握加减消元法解二元一次方程组的方法; 2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组; 3会对一些特殊的方程组进行特殊的求解 【要点梳理】【要点梳理】 要点一、要点一、加减消元法解二元一次方程组加减消元法解二元一次方程组 两个二元一次方程中同一未知数的系数相反或相等时, 将两个方程的两边分别相加或相 减, 就能消去这个未知数, 得到一个一元一次方程, 这种方法叫。
9、第 1 页 共 4 页 二次根式的乘除运算二次根式的乘除运算巩固练习巩固练习(提高)(提高) 【巩固练习】【巩固练习】 一、一、 选择题选择题 1.若 2 0,(1)xxx化简的结果是( ). A-1 B.1 C .2x-1 D.1-2x 2.下列计算正确的是( ) A B C D 3.计算 1 (0,0) b abab aab 等于( ). A 2 1 ab a b B. 2 1 ab ab C. 1 ab b D . b ab 4.把 m m 1 根号外的因式移到根号内,得( ) Am Bm Cm Dm 5.设2, 3,ab用含, a b的式子表示 0.54,则下列表示正确的是( ). A.0.3ab B.3ab C.0.1ab D. 2 0.1a b 6.若 2 2 3(2 2)0abab ,那么 b a的值是( ). A1 B.。
10、第 1 页 共 4 页 二次根式二次根式巩固练习巩固练习(提高)(提高) 【巩固练习】【巩固练习】 一、选择题一、选择题 1.若代数式在实数范围内有意义,则 x 的取值范围为( ) Ax0 Bx0 Cx 0 Dx0 且 x 1 2.使式子有意义的未知数 x 有( )个 A0 B1 C2 D无数 3.下列说法正确的是( ) A 4是一个无理数 B函数 1 1 y x 的自变量 x 的取值范围是 x1 C8 的立方根是2 D.若点(2, )-3)PaQ和点(b,关于 x 轴对称,则ab的值为 5. 4. 已知 a,b,c 在数轴上的位置如图所示,则代数式( ) (A) 2c a (B) 32ab (C) ca (D) a 5. 若 ,则 等于( ) A B C D 6.将a。
11、第 1 页 共 4 页 二次根式的乘除二次根式的乘除运算运算巩固练习巩固练习(基础)(基础) 【巩固练习】【巩固练习】 一、一、 选择题选择题 1.计算18827的结果是( ) A 4 6 3 B.18 6 C. 9 3 2 D. 1 6 4 2.当a0, b0 时,化简 33 50a b 得( ) A 50abab B.-50abab C.52abab D. 52abab 3.在 2222 , 6, 0.16 2 x xyx y中,最简二次根式有( ) A1 个 B.2 个 C.3 个 D.4 个 4. 化简二次根式 3 a的正确结果是( ) Aaa Ba a Ca a Daa 5.下列根式是最简二次根式的是( ) A8 B 24 xy C D 6. 已知,化简二次根式的正确结果为( ). A. B. C. D.。
12、第 1 页 共 4 页 二次根式二次根式巩固练习巩固练习(基础)(基础) 【巩固练习】【巩固练习】 一选择题一选择题 1.若二次根式 1x 有意义,则 x 的取值范围是( ). A.1x Bx1 C.x0)=_. 10.若22xx=0,则 2 (1) 1 x x =_. 第 2 页 共 4 页 11.当 x0 时,化简 2 1-xx=_. 12.有如下判断: (1) 1 1010x yxy x (2) 1 5 5 =1 (3) 55 55 2424 (4)3 3 2 3 6 3 (5) 22 25 16541 (6) a bab 成立的条件是, a b同 号.其中正确的有_个. 三三 综合题综合题 13. 当x为何值时,下列式子有意义? (1) 2 1x (2) 2 x (3) 1 1 y x ; (4) 1 1 y x。
13、第 1 页 共 4 页 二次根式的加减二次根式的加减-巩固练习巩固练习(提高)(提高) 一一. .选择题选择题 1. 下面说法正确的是( ) A. 被开方数相同的二次根式一定是同类二次根式 B. 与是同类二次根式 C. 与不是同类二次根式 D. 同类二次根式是根指数为 2 的根式 2. 与不是同类二次根式的是( ) A. B. C. D. 3. 若,则的值等于( ) A. 4 B. C. 2 D. 4. 下列各式中运算正确的是( ) A.2510)5225( B.529)52( 2 C.1) 2 1 3 1 )(23( D. c a b a cba)( 5.()()a bb a b aa b的运算结果是( ) A 0 B. ()ab ba C. ()ab ab D. 2ab ab 6. 等腰三。
14、第 1 页 共 4 页 二次根式的乘除运算二次根式的乘除运算知识讲解知识讲解(提高提高) 【学习目标】【学习目标】 1.掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算. 2.能运用二次根式的有关性质进行分母有理化. 【要点梳理】【要点梳理】 要点要点一一、二次根式的、二次根式的乘乘法法 1 1. .乘法法则:乘法法则: (a0,b0),即两个二次根式相乘,根指数不变,只把被开方数相乘. 要点诠释:要点诠释: (1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中 a、b 都必须是非负数;(在本章中, 如。
15、第 1 页 共 3 页 二次根式二次根式知识讲解知识讲解(提高)(提高) 【学习目标】【学习目标】 1 1、理解二次根式及最简二次根式的概念,了解被开方数是非负数的理由. 2 2、理解并掌握下列结论: a0, (a0) , (a0) ,(a0) ,并利用它 们进行计算和化简 【要点梳理】【要点梳理】 要点一、二次根要点一、二次根式的概念式的概念 一般地,我们把形如(a0)的式子叫做二次根式, “”称为二次根号 要点诠释:要点诠释: 二次根式的两个要素:根指数为 2;被开方数为非负数. 要点二、二次根式的要点二、二次根式的性质性质 1.a0, (a0。
16、第 1 页 共 3 页 二二次根式的加减次根式的加减-巩固练习巩固练习(基础)(基础) 一一. .选择题选择题 1.下列根式中,与是同类二次根式的为( ) A B C D 2.下面说法正确的是( ) A. 被开方数相同的二次根式一定是同类二次根式 B. 与是同类二次根式 C. 与不是同类二次根式 D. 同类二次根式是根指数为 2 的根式 3.下列计算中,正确的是( ) A B C D 4. 若,则的值等于( ) A. 4 B. C. 2 D. 5.计算(32)(23)等于( ) A7 B. 6- 6+3 3-2 2 C.1 D. 6+3 3-2 2 6.下列计算正确的是( ) A. 2= bab( a) B. abab C. 22 +abab D. 1 aa a 二二。
17、第 1 页 共 4 页 二次根式的乘除运算二次根式的乘除运算知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1.掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算. 2.能运用二次根式的有关性质进行分母有理化. 【要点梳理】【要点梳理】 要点要点一一、二次根式的、二次根式的乘乘法法 1 1. .乘法法则:乘法法则: (a0,b0),即两个二次根式相乘,根指数不变,只把被开方数相乘. 要点诠释:要点诠释: (1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中 a、b 都必须是非负数;(在本章中。
18、第 1 页 共 4 页 二次根式二次根式知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1 1、理解二次根式及最简二次根式的概念,了解被开方数是非负数的理由. 2 2、理解并掌握下列结论: a0, (a0) , (a0) ,(a0) ,并利用它 们进行计算和化简 【要点梳理】【要点梳理】 要点一、二次根式的概念要点一、二次根式的概念 一般地,我们把形如(a0)的式子叫做二次根式, “”称为二次根号 要点诠释:要点诠释: 二次根式的两个要素:根指数为 2;被开方数为非负数. 要点二、二次根式的性质要点二、二次根式的性质 1.a0, (a0。
19、第 1 页 共 4 页 二次根式的加减二次根式的加减-知识讲解知识讲解(提高)(提高) 【学习目标】【学习目标】 1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根 式,进行简单的二次根式加减运算; 2、会利用运算律和运算法则进行二次根式的混合运算. 【要点梳理】【要点梳理】 要点一、要点一、同类二次根式同类二次根式 1.1.定义定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根 式就叫做同类二次根式. 要点诠释:要点诠释: (1)判断几个二次根式是否是同类二次根式,必须先将二次根。
20、第 1 页 共 3 页 二二次根式的加减次根式的加减-知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根 式,进行简单的二次根式加减运算; 2、会利用运算律和运算法则进行二次根式的混合运算. 【要点梳理】【要点梳理】 要点一、要点一、同类二次根式同类二次根式 1.1.定义定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根 式就叫做同类二次根式. 要点诠释:要点诠释: (1)判断几个二次根式是否是同类二次根式,必须先将二次根。