ampamp1672 数学证明 学案含答案

第第 2 2 课时课时 导数的几何意义导数的几何意义 学习目标 1.了解导函数的概念, 理解导数的几何意义.2.会求简单函数的导函数.3.根据导数 的几何意义,会求曲线上某点处的切线方程 知识点一 导数的几何意义 1割线斜率与切线斜率 设函数 yf(x)的图象如图所示,直线 AB 是过点 A(x0,

ampamp1672 数学证明 学案含答案Tag内容描述:

1、第第 2 2 课时课时 导数的几何意义导数的几何意义 学习目标 1.了解导函数的概念, 理解导数的几何意义.2.会求简单函数的导函数.3.根据导数 的几何意义,会求曲线上某点处的切线方程 知识点一 导数的几何意义 1割线斜率与切线斜率 设函数 yf(x)的图象如图所示,直线 AB 是过点 A(x0,f(x0)与点 B(x0 x,f(x0 x)的一条 割线,此割线的斜率是y x fx0 xfx。

2、第第 2 2 课时课时 数列的递推公式数列的递推公式 学习目标 1.理解递推公式的含义,能根据递推公式求出数列的前几项.2.了解用累加法、累 乘法由递推公式求通项公式.3.会由数列an的前 n 项和 Sn求数列an的通项公式 知识点一 数列的递推公式 如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个 数列的递推公式 思考 仅由数列an的关系式 anan12(n2,。

3、2数学证明一、选择题1论语学路篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足”上述推理用的是()A类比推理 B归纳推理C演绎推理 D一次三段论答案C2正弦函数是奇函数,f(x)sin(x21)是正弦函数,因此f(x)sin(x21)是奇函数以上推理()A结论正确 B大前提不正确C小前提不正确 D全不正确答案C解析由于函数f(x)sin(x21)不是正弦函数故小前提不正确3命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误。

4、2数学证明一、选择题1论语学路篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足”上述推理用的是()A类比推理B归纳推理C演绎推理D一次三段论2正弦函数是奇函数,f(x)sin(x21)是正弦函数,因此f(x)sin(x21)是奇函数以上推理()A结论正确B大前提不正确C小前提不正确D全不正确3命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A使用了归纳推理B使用了类比推理C使用了“三段论”,但推。

5、2数学证明学习目标1.理解演绎推理的意义.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的区别和联系知识点一演绎推理的含义思考分析下面几个推理,找出它们的共同点(1)所有的金属都能导电,铀是金属,所以铀能够导电;(2)一切奇数都不能被2整除,(21001)是奇数,所以(21001)不能被2整除答案问题中的推理都是从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理叫演绎推理梳理定义从一般性的原理出发,推出某个特殊情况下的结论的推理特点由一般到特殊的推理知识点二三段论思考所有的。

标签 > ampamp1672 数学证明 学案含答案[编号:122562]