第第 2 2 课时课时 等差数列前等差数列前 n n 项和的性质及应用项和的性质及应用 学习目标 1.进一步熟练掌握等差数列的通项公式和前 n 项和公式,了解等差数列前 n 项和 的一些性质.2.掌握等差数列前 n 项和的最值问题 知识点一 等差数列前 n 项和的性质 1若数列an是公差为 d 的等
4.2.1第2课时等差数列的性质ppt课件Tag内容描述:
1、第第 2 2 课时课时 等差数列前等差数列前 n n 项和的性质及应用项和的性质及应用 学习目标 1.进一步熟练掌握等差数列的通项公式和前 n 项和公式,了解等差数列前 n 项和 的一些性质.2.掌握等差数列前 n 项和的最值问题 知识点一 等差数列前 n 项和的性质 1若数列an是公差为 d 的等差数列,则数列 Sn n 也是等差数列,且公差为d 2. 2设等差数列an的公差为 d,Sn为其。
2、第第 2 课时课时 等差数列前等差数列前 n 项和的性质及应用项和的性质及应用 1在等差数列an中,a11,其前 n 项和为 Sn,若S8 8 S6 62,则 S10 等于( ) A10 B100 C110 D120 答案 B 解析 an是等差数列,a11, Sn n 也是等差数列且首项为S1 11. 又S8 8 S6 6 2, Sn n 的公差是 1, S10 101(101)110。
3、第第 2 2 课时课时 等差数列的性质等差数列的性质 学习目标 1.能根据等差数列的定义推出等差数列的常用性质.2.能运用等差数列的性质简 化计算 知识点一 等差数列通项公式的变形及推广 设等差数列an的首项为 a1,公差为 d,则 andn(a1d)(nN*), anam(nm)d(m,nN*), danam nm (m,nN*,且 mn) 其中,的几何意义是点(n,an)均在直线 ydx(a。
4、4.2.2 第1课时 等差数列前n项和公式的推导及简单应用 新课程标准解读 核心素养 1.探索并掌握等差数列的前n项和公式,理解等差数列的前n项和公式和通项公式的关系. 数学抽象数学运算 2.能在具体的问题情境中,发现数列的等差关系,并解决。
5、第第 2 课时课时 等差数列的性质等差数列的性质 1 已知等差数列an的公差为 d(d0), 且 a3a6a10a1332, 若 am8, 则 m 的值为( ) A12 B8 C6 D4 答案 B 解析 由等差数列的性质,得 a3a6a10a13(a3a13)(a6a10) 2a82a84a832, a88,又 d0,m8. 2已知数列an,bn为等差数列,且公差分别为 d12,d21,则数列。
6、第2课时等差数列前n项和的性质一、选择题1已知数列an满足an262n,则使其前n项和Sn取最大值时n的值为()A11或12 B12C13 D12或13答案D解析an262n,an1an2,数列an为等差数列,且a124,d2,Sn24n(2)n225n2.nN,当n12或13时,Sn最大2等差数列an中,首项a10,公差d0,d0,C中曲线满足3数列an为等差数列,它的前n项和为Sn,若Sn(n1)2,则的值是()A2 B1 C0 D1答案B解析等差数列前n项和Sn的形式为Snan2bn,(n1)2n22n1an2。
7、4.2.2 第2课时 等差数列前n项和的性质及应用 学 习 目 标 核 心 素 养 1.掌握 an与 Sn的关系并会应用难点. 2.掌握等差数列前 n 项和的性质及应用重点. 3.会用裂项相消法求和易错点. 1.通过等差数列前n项和Sn的函。
8、第2课时等差数列前n项和的性质学习目标1.会利用等差数列性质简化求和运算.2.会利用等差数列前n项和的函数特征求最值知识点一等差数列an的前n项和Sn的性质性质1等差数列中依次k项之和Sk,S2kSk,S3kS2k,组成公差为k2d的等差数列性质2若等差数列的项数为2n(nN),则S2nn(anan1),S偶S奇nd,(S奇0);若等差数列的项数为2n1(nN),则S2n1(2n1)an(an是数列的中间项),S奇S偶an,(S奇0)性质3an为等差数列为等差数列知识点二等差数列an的前n项和公式与函数的关系将等差数列前n项和公式Snna1d整理成关于n的函数可得Snn2n.知识点三等差数列前n项和的。
9、第二章 2.2.1 等差数列,第2课时 等差数列的性质,学习目标 1.能根据等差数列的定义推出等差数列的常用性质. 2.能运用等差数列的性质解决有关问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等差数列通项公式的推广,思考1 已知等差数列an的首项a1和公差d能表示出通项ana1(n1)d,如果已知第m项am和公差d,又如何表示通项an?,答案 设等差数列的首项为a1,则ama1(m1)d, 变形得a1am(m1)d, 则ana1(n1)dam(m1)d(n1)dam(nm)d.,答案 等差数列通项公式可变形为andn(a1d),其图象为一条直线上孤立的一系列点,(1,a1),(m,am),(n,。
10、4.2.1 第1课时 等差数列的概念及通项公式 新课程标准解读 核心素养 1.通过生活中的实例,理解等差数列的概念和通项公式的意义. 数学抽象 2.能在具体的问题情境中,发现数列的等差关系,并解决相应的问题. 逻辑推理数学运算 3.体会等差。
11、第2课时等差数列的性质一、选择题1在等差数列an中,a2a46,则a1a2a3a4a5等于()A30 B15 C5 D10答案B解析在等差数列an中,a2a46,a33,a1a2a3a4a55a315.故选B.2设数列an,bn都是等差数列,且a125,b175,a2b2100,则a37b37等于()A0 B37 C100 D37答案C解析a1b1100a2b2,anbn是常数列,a37b37100.3等差数列an中,若a3a4a5a6a7450,则a2a8的值等于()A45 B75 C180 D300答案C解析a3a4a5a6a7(a3a7)(a4a6)a55a5450,a590.a2a82a5180.4已知等差数列an的公差为d(d0),且a3a6a10a1332,若am8,则m的值为(。
12、第2课时等差数列的性质学习目标1.了解等差中项的概念.2.能根据等差数列的定义推出等差数列的常用性质.3.能运用等差数列的性质解决有关问题知识点一等差数列的单调性与图像从函数角度研究等差数列的性质与图像由anf(n)a1(n1)ddn(a1d),可知其图像是直线ydx(a1d)上的一些等间隔的点,这些点的横坐标是正整数,其中公差d是该直线的斜率,即自变量每增加1,函数值增加d.当d0时,an为递增数列,如图甲所示当d0时,an为递减数列,如图乙所示当d0时,an为常数列,如图丙所示知识点二等差中项的概念如果在a与b中间插入一个数A,使a,A,b成等差数。
13、4.2.1 第2课时 等差数列的性质 知识点 等差数列的性质 1等差数列通项公式的推广 通项公式 通项公式的推广 ana1n1d 揭示首末两项的关系 anamnmd 揭示任意两项之间的关系 2等差数列的性质 若an是公差为 d 的等差数列,。