第2课时指数函数及其性质的应用 基础过关 1.已知a30.2,b0.23,c(3)0.2,则a,b,c的大小关系为() A.abc B.bac C.cab D.bca 解析a30.2(1,3),b0.2353125,c(3)0.2ac. 答案B 2.若函数f(x)是R上的增函数,则实数a的取值范围为
3.3指数函数第1课时指数函数的图像与性质 课后作业含答案Tag内容描述:
1、第2课时指数函数及其性质的应用基础过关1.已知a30.2,b0.23,c(3)0.2,则a,b,c的大小关系为()A.abc B.bacC.cab D.bca解析a30.2(1,3),b0.2353125,c(3)0.2ac.答案B2.若函数f(x)是R上的增函数,则实数a的取值范围为()A.4,8) B.(1,)C.(1,8) D.4,)解析由题意可知,yf(x)在R上是增函数,所以解得4a8.答案 A3.函数y2x2ax在(,1)上是增函数,则实数a的取值范围是_.解析由复合函数的单调性知,ux2ax的对称轴x1,即a2.答案2,)4.若函数f(x)则不等式f(x)的解集为_.解析当x0时,由f(x)得()x,0x1;当x0时,不等式明显不成立,。
2、21.2指数函数的图象和性质第1课时指数函数的图象和性质基础过关1y2x1的定义域是()A(,)B(1,)C1,) D(0,1)(1,)答案A解析不管x取何值,函数式都有意义,故选A.2已知集合M1,1,N,则MN等于()A1,1B1C0D1,0答案B解析2x14,212x122,1x12,2x1.又xZ,x0或x1,即N0,1,MN13函数y2x1的图象是()答案A解析当x0时,y2,且函数单调递增,故选A.4当x2,2)时,y3x1的值域是()A(,8 B,8C(,9) D,9答案A解析y3x1,在x2,2)上是减函数,321y321,即y8.5指数函数y(2a)x在定义域。
3、1 4.2 指数函数指数函数 第第 1 课时课时 指数函数的概念图象与性质指数函数的概念图象与性质 学 习 目 标 核 心 素 养 1.理解指数函数的概念与意义,掌握指数函数的定义域值域的求法重点难点 2能画出具体指数函数的图象,并能根据指。
4、第2课时习题课指数函数及其性质基础过关1设y140.9,y280.48,y3,则()Ay3y1y2 By2y1y3Cy1y2y3 Dy1y3y2解析40.921.8,80.4821.44,21.5,根据y2x在R上是增函数,21.821.521.44,即y1y3y2,故选D.答案D2若82a,a.故选A.答案A3函数yax在0,1上的最大值与最小值之和为3,则a()A0 B1 C2 D3解析由已知得a0a13,1a3,a2.答案C4函数y2x2ax在(,1)内单调递增,则a的取值范围是_解析由复合函。
5、3指数函数第1课时指数函数的图像与性质基础过关1指数函数yf(x)的图像经过点,那么f(4)f(2)()A8 B16 C32 D64解析设f(x)ax(a0且a1),由条件知f(2),故a2,a2,因此f(x)2x,f(4)f(2)242264.答案D2已知函数f(x)axb(a0,且a1)经过点(1,5),(0,4),则f(2)的值为()A7 B8 C12 D16解析由已知得解得f(x)3,f(2)3437.答案A3函数f(x)3x3(1x5)的值域是()A(0,) B(0,9)C. D.解析1x5,2x32,323x332,于是有f(x)9,即所求函数的值域为.答案C4指数函数y(2a)x在定义域内是减。