3.4.1 对数及其运算课后作业含答案

第2课时习题课对数函数的图像及其性质的应用 基础过关 1若f(x)mlog2x为对数函数,则() Am1 Bm2 CmR Dm1 解析只有形如ylogax(a0且a1)的函数,才是对数函数 答案A 2若对数函数过点(4,2),则其解析式为() Ayx By2x Cylog4x Dylog2x 解析设

3.4.1 对数及其运算课后作业含答案Tag内容描述:

1、第2课时习题课对数函数的图像及其性质的应用基础过关1若f(x)mlog2x为对数函数,则()Am1 Bm2 CmR Dm1解析只有形如ylogax(a0且a1)的函数,才是对数函数答案A2若对数函数过点(4,2),则其解析式为()Ayx By2x Cylog4x Dylog2x解析设解析式为ylogax(a0且a1),因为点(4,2)在对数函数图像上,故2loga4,即a2.答案D3函数f(x)loga(2x)的定义域为()A(0,) B(2,)C(,2) D(,0)解析由题意2x0,即x2,故定义域为(,2)答案C4已知函数f(x)ln(x)1,f(a)4,则f(a)_解析设g(x)f(x)1ln(x),则g(x)为奇函数由f(a)4,知g(a)f(a)13.g(a)3,则。

2、1正整数指数函数2指数扩充及其运算性质基础过关1下列等式一定成立的是()Aaaa Baa0C(am)namn Damanamn解析由指数运算的性质可知D正确答案D2化简的结果是()Aa B. Ca2 D.解析(aa)(a)a.答案B3化简(a22a2)(a2a2)的结果为()A1 B1C. D.解析(a22a2)(a2a2)(aa1)2(aa1)(aa1).答案C4计算28_.解析原式12223.答案235计算()022_解析原式11.答案6计算下列各。

3、第2课时指数函数及其性质的应用基础过关1.已知a30.2,b0.23,c(3)0.2,则a,b,c的大小关系为()A.abc B.bacC.cab D.bca解析a30.2(1,3),b0.2353125,c(3)0.2ac.答案B2.若函数f(x)是R上的增函数,则实数a的取值范围为()A.4,8) B.(1,)C.(1,8) D.4,)解析由题意可知,yf(x)在R上是增函数,所以解得4a8.答案 A3.函数y2x2ax在(,1)上是增函数,则实数a的取值范围是_.解析由复合函数的单调性知,ux2ax的对称轴x1,即a2.答案2,)4.若函数f(x)则不等式f(x)的解集为_.解析当x0时,由f(x)得()x,0x1;当x0时,不等式明显不成立,。

4、3.1.2指数函数第1课时指数函数及其图象基础过关1.函数y823x(x0)的值域是()A.0,8) B.(0,8) C.0,8 D.(0,8解析x0,x0,3x3,00,a1)的图象可能是()解析函数yf(x)的图象恒过(1,0)点,只有图象D适合.答案D3.指数函数y(2a)x在定义域内是减函数,则a的取值范围是_.解析由题意可知,02a1,即1a2.答案(1,2)4.函数y(a24a4)ax是指数函数,则a_.解析由a24a41且a0,a1可得a3.答案35.函数y2x1的值域为_,函数y的值域为_.解析因为2x0,所以2x11,即y1;由y得2x1,因为。

5、7 7. .2 2 复数的四则运算复数的四则运算 7 7. .2.12.1 复数的加减运算及其几何意义复数的加减运算及其几何意义 基础达标 一选择题 1.复数 z1212i,z2122i,则 z1z2等于 A.0 B.3252i C.525。

6、第2课时对数的运算性质及换底公式基础过关1若a0,a1,x0,y0,xy,下列式子正确的个数为()logaxlogayloga(xy);logaxlogayloga(xy);logalogaxlogay;loga(xy)logaxlogay.A0 B1 C2 D3解析根据对数的运算性质知,这四个式子都不正确故选A.答案A2计算lg 83lg 5的值为()A3 B1 C1 D3解析lg 83lg 5lg 8lg 53lg 8lg 125lg(8125)lg 1 0003.答案D3已知lg a,lg b是方程2x24x10的两根,则的值是()A4 B3 C2 D1解析lg alg b2,lg alg b,(lg alg b)2(lg alg b)24lg a。

7、第2课时对数型函数及其性质基础过关1.函数f(x)logax(0a1)在a2,a上的最大值是()A.0 B.1 C.2 D.a解析0a1,f(x)logax在a2,a上是减函数,f(x)maxf(a2)logaa22.答案C2.设alog54,b(log53)2,clog45,则()A.alog54log53log510,1alog54log53b(log53)2.又clog45log441.cab.答案D3.函数f(x)的定义域是_.解析由题意有解得1x2.答案(1,24.函数f(x)|logx|的单调增区间是_.解析f(x)当x1时,tlogx是减函数,f(x)logx是。

8、第2课时对数的运算性质及换底公式基础过关1.化简log6122log6的结果为()A.6 B.12 C.log6 D.解析原式log6log62log6log6.答案C2.已知lg 2a,lg 3b,则log312等于()A.2a B. C. D.解析log312.答案D3.计算:_.解析原式.答案4.计算:_.解析原式logloglog94log35log32log35log310.答案5.已知3a5bM,且2,则M_.解析由3a5bM,得alog3M,blog5M,故logM3logM5logM152,M.答案6.计算:(1)log25log58;(2)log23log34log45log52;解(1)log25log58log283.。

9、22对数函数22.1对数的概念和运算律基础过关1指数式a5b(a0,a1)所对应的对数式是()Alog5abBlog5baClogb5aDlogab5答案D2若logx(2)1,则x的值为()A.2B.2C.2或2D2答案B解析logx(2)1,x12,即2,即x2.321log25的值等于()A2B2C2D1答案B解析21log2522log2522log25252.4log7log3(log2x)0,则x等于()A.B.C.D.答案C解析由已知得,log3(log2x)1,log2x3,x23,x(23)8.5若4lgx16,则x的值为_答案100解析4lg。

10、4对数第1课时对数及其运算基础过关1将23化为对数式为()Alog23 Blog(3)2Clog23 Dlog2(3)解析根据对数的定义知选C.答案C2有以下四个结论:lg(lg 10)0;ln(ln e)0;若10lg x,则x10;若eln x,则xe2.其中正确的是()A B C D解析lg(lg 10)lg 10,ln(ln e)ln 10,故正确;若10lg x,则x1010,故错误;若eln x,则xee,故错误答案C3若log3(log2x)1,则x()A. B. C. D.解析log3(log2x)1,log2x3,x238,则x.答案C4ln 1log(1)(1)_解析ln 1log(1)(1)011.答案15方程9x63x。

标签 > 3.4.1 对数及其运算课后作业含答案[编号:130044]