3.2古典概型课时作业含答案

3.3几何概型 1.在半径为1的圆中随机地投一个点,则点落在圆内接正方形中的概率是_. 解析圆的面积S1,内接正方形的面积S22,则概率P. 答案 2.某轻轨车站每隔5分钟有一辆轻轨车通过,乘客随机地来到该车站候车,则乘客候车时间不大于3分钟的概率为_. 解析由于乘客在5分钟内的任一时刻到达都是等可

3.2古典概型课时作业含答案Tag内容描述:

1、3.3几何概型1.在半径为1的圆中随机地投一个点,则点落在圆内接正方形中的概率是_.解析圆的面积S1,内接正方形的面积S22,则概率P.答案2.某轻轨车站每隔5分钟有一辆轻轨车通过,乘客随机地来到该车站候车,则乘客候车时间不大于3分钟的概率为_.解析由于乘客在5分钟内的任一时刻到达都是等可能的,符合几何概型的等可能性和无限性.同时,只有一个因素时间在变,所以用一维几何量长度来测量.由题意,得乘客候车时间不大于3分钟的概率为.答案3.若将一个质点随机投入如图所示的长方形ABCD中,其中AB2,BC1,则质点落在以AB为直径的半圆内的概率。

2、分层训练进阶冲关A 组 基础练(建议用时 20 分钟)1.下列关于古典概型的说法中正确的是 ( B )试验中所有可能出现的基本事件只有有限个;每个事件出现的可能性相等;每个基本事件出现的可能性相等;基本事件的总数为 n,随机事件 A 若包含 k 个基本事件,则 P(A)= .A. B. C. D.2.同时投掷两颗大小完全相同的骰子,用(x,y)表示结果,记 A 为“所得点数之和小于 5”,则事件 A 包含的基本事件数是 ( D )A.3 B.4 C.5 D.63.从甲、乙、丙三人中任选 2 人作代表,则甲被选中的概率为 ( C )A. B. C. D.14.从1,2,3,4,5中随机选取一个数为 a,从1,2,3中随机选取。

3、1010. .1.31.3 古典概型古典概型 1下列是古典概型的是 A任意抛掷两枚骰子,所得点数之和作为样本点 B求任意的一个正整数平方的个位数字是 1 的概率,将取出的正整数作为样本点 C在甲乙丙丁 4 名志愿者中,任选一名志愿者去参加跳。

4、2古典概型2.1古典概型的特征和概率计算公式一、选择题1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A. B. C. D.答案C解析列树状图得:共有12种情况,取出的两张卡片上的数字之和为奇数的情况为8种,所以所求概率为.2.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A. B.C. D.答案B解析基本事件的总数为6,构成“取出的2个数之差的绝对值为2”这个事件的基本事件的个数为2,所以所求概率P,故选B.3.一个袋中装有2个红球和2个白球,现从袋中取出1个球,然。

5、10.1.310.1.3 古典概型古典概型 基础达标 一选择题 1.下列是古典概型的是 A.任意抛掷两枚骰子,所得点数之和作为样本点 B.求任意的一个正整数平方的个位数字是 1 的概率, 将取出的正整数作为样本点时 C.从甲地到乙地共 n 。

6、3.2古典概型1.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_.解析从1,2,3,6中随机取2个数,共有6种不同的取法,其中所取2个数的乘积是6的有1,6和2,3,共2种,故所求概率是.答案2.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为_.解析从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色相同有1种结果,则颜色不同有5种结果,故所求概率为.答案3.在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是_.解析设。

7、3.2古典概型学习目标1.了解基本事件的概念并会罗列某一事件包含的所有基本事件.2.理解古典概型的概念及特点.3.会应用古典概型概率公式解决简单的概率计算问题知识点一基本事件1基本事件在一次试验中可能出现的每一个基本结果称为基本事件2等可能基本事件若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件知识点二古典概型1古典概型的定义:如果某概率模型具有以下两个特点:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件的发生都是等可能的那么我们将具有这两个特点的概率模型称为古典概。

8、3.2古典概型一、选择题1一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为()A. B. C. D.答案A解析把红球标记为红1、红2,白球标记为白1、白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:红1、红1,红1、红2,红2、红1,红2、红2,白1、白1,白1、白2,白2、白1,白2、白2,故所求概率为P.2先后抛掷两颗骰子,所得点数之和为7的概率为()A. B. C. D.答案C解析抛掷两颗骰子,一共有36种结果,其中点数之和为7的共有6种结果,根据古典概型的概率公式,得P.3甲、乙两人有三个。

【3.2古典概型课时作业含答案】相关DOC文档
标签 > 3.2古典概型课时作业含答案[编号:109631]