3.2古典概型同步练习含答案

3.3.1几何概型 知识点一 与长度有关的几何概型的问题 1已知函数f(x)x2x2,x5,5,那么满足f(x0)0,x05,5的x0取值的概率为() A B C D 答案A 解析由f(x0)0,即xx020,解得1x02所求概率为P 2在面积为S的ABC的边AB上任取一点P,则PBC的面积大于的概

3.2古典概型同步练习含答案Tag内容描述:

1、3.3.1几何概型知识点一 与长度有关的几何概型的问题1已知函数f(x)x2x2,x5,5,那么满足f(x0)0,x05,5的x0取值的概率为()A B C D答案A解析由f(x0)0,即xx020,解得1x02所求概率为P2在面积为S的ABC的边AB上任取一点P,则PBC的面积大于的概率是()A B C D答案C解析如图所示,在边AB上任取一点P,因为ABC与PBC是等高的,所以事件“PBC的面积大于”等价于事件“|BP|AB|”,即PPBC的面积大于知识点二 与角度有关的几何概型问题3如图,在平面直角坐标系中,射线OT为60角的终边,在任意角集合中任取一个角,则该角终边落在xOT内的概率是()A BC D。

2、3.2.1古典概型(1)知识点一 基本事件及其计数问题1一个家庭有两个小孩,则所有可能的基本事件有()A(男,女),(男,男),(女,女)B(男,女),(女,男)C(男,男),(男,女),(女,男),(女,女)D(男,男),(女,女)答案C解析两个孩子出生有先后之分2做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”(1)写出这个试验的基本事件;(2)求出这个试验的基本事件的总数;(3)写出“第1次取出的数字是2”这一事件包含的基本事件解(1)这个试验的基本事件为(0,1)(0,2),(1。

3、3.3几何概型一、填空题1从区间(15,25内的所有实数中随机取一个实数a,则这个实数满足17a20的概率是_答案解析由a(15,25,得P(17a20).2在长为10厘米的线段AB上任取一点G,用AG为半径作圆,则圆的面积介于36平方厘米到64平方厘米的概率是_答案解析以AG为半径作圆,面积介于36平方厘米到64平方厘米,则AG的长度应介于6厘米到8厘米之间所以,所求概率P(A).3当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是_答案解析由题意可知,在80秒内路口的红、黄、绿灯是随机出现的,可以认为是无限。

4、分层训练进阶冲关A 组 基础练(建议用时 20 分钟)1.下列关于古典概型的说法中正确的是 ( B )试验中所有可能出现的基本事件只有有限个;每个事件出现的可能性相等;每个基本事件出现的可能性相等;基本事件的总数为 n,随机事件 A 若包含 k 个基本事件,则 P(A)= .A. B. C. D.2.同时投掷两颗大小完全相同的骰子,用(x,y)表示结果,记 A 为“所得点数之和小于 5”,则事件 A 包含的基本事件数是 ( D )A.3 B.4 C.5 D.63.从甲、乙、丙三人中任选 2 人作代表,则甲被选中的概率为 ( C )A. B. C. D.14.从1,2,3,4,5中随机选取一个数为 a,从1,2,3中随机选取。

5、专题突破二古典概型概率计算时的几个关注点一、关注基本事件的有限性和等可能性例1袋中有大小相同的3个白球,2个红球,2个黄球,每个球有一个区别于其他球的编号,从中随机摸出一个球(1)把每个球的编号看作一个基本事件建立的概率模型是不是古典概型?(2)把球的颜色作为划分基本事件的依据,有多少个基本事件?以这些基本事件建立的概率模型是不是古典概型?思维切入将基本事件列出来,分析是否有限和等可能解(1)因为基本事件个数有限,而且每个基本事件发生的可能性相同,所以是古典概型(2)把球的颜色作为划分基本事件的依据,可得到“取。

6、2古典概型2.1古典概型的特征和概率计算公式基础过关1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A. B. C. D.解析列树状图得:共有12种情况,取出的两张卡片上的数字之和为奇数的情况为8种,所以所求概率为.答案C2.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A. B. C. D.解析选取两支彩笔的方法有10种,含有红色彩笔的选法为4种,由古典概型公式,满足题意的概率p.故选C.答案C3.。

7、A 级 基础巩固一、选择题1袋中有 2 个红球,2 个白球,2 个黑球,从里面任意摸 2 个小球,下列不是基本事件的是( )A 正好 2 个红球 B正好 2 个黑球C正好 2 个白球 D 至少 1 个红球解析:至少 1 个红球包括“一红一白”,“一红一黑”,“二个红球”答案:D2一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为( )A. B. C. D.12 13 38 58解析:该树枝的树梢有 6 处,有 2 处能找到食物,所以获得食物的概率为 .26 13答案:B3四条线段的长度分别是 1,3,5,7,从这四条线段中任取三。

8、3.2古典概型一、选择题1一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为()A. B. C. D.答案A解析把红球标记为红1、红2,白球标记为白1、白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:红1、红1,红1、红2,红2、红1,红2、红2,白1、白1,白1、白2,白2、白1,白2、白2,故所求概率为P.2先后抛掷两颗骰子,所得点数之和为7的概率为()A. B. C. D.答案C解析抛掷两颗骰子,一共有36种结果,其中点数之和为7的共有6种结果,根据古典概型的概率公式,得P.3甲、乙两人有三个。

9、10.1.3 古典概型古典概型 A 级基础过关练 1多选下列是古典概型的是 A从 6 名同学中,选出 4 人参加数学竞赛,每人被选中的可能性的大小 B同时掷两颗骰子,点数和为 7 的概率 C近三天中有一天降雨的概率 D10 个人站成一排,其。

10、3.2古典概型学习目标1.了解基本事件的概念并会罗列某一事件包含的所有基本事件.2.理解古典概型的概念及特点.3.会应用古典概型概率公式解决简单的概率计算问题知识点一基本事件1基本事件在一次试验中可能出现的每一个基本结果称为基本事件2等可能基本事件若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件知识点二古典概型1古典概型的定义:如果某概率模型具有以下两个特点:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件的发生都是等可能的那么我们将具有这两个特点的概率模型称为古典概。

11、3.2古典概型1.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_.解析从1,2,3,6中随机取2个数,共有6种不同的取法,其中所取2个数的乘积是6的有1,6和2,3,共2种,故所求概率是.答案2.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为_.解析从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色相同有1种结果,则颜色不同有5种结果,故所求概率为.答案3.在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是_.解析设。

标签 > 3.2古典概型同步练习含答案[编号:125494]