24.1.1圆

2 2. .5.25.2 圆与圆的位置关系圆与圆的位置关系 1圆 C1:x2y24x8y50 与圆 C2:x2y24x4y10 的位置关系为 A相交 B外切 C内切 D外离 答案 C 解析 由已知,得 C12,4,r15,C22,2,r23,2.5.2 圆与圆的位置关系圆与圆的位置关系 一选择题 1

24.1.1圆Tag内容描述:

1、2 2. .5.25.2 圆与圆的位置关系圆与圆的位置关系 1圆 C1:x2y24x8y50 与圆 C2:x2y24x4y10 的位置关系为 A相交 B外切 C内切 D外离 答案 C 解析 由已知,得 C12,4,r15,C22,2,r23。

2、2.5.2 圆与圆的位置关系圆与圆的位置关系 一选择题 1.多选题设 r0,圆x12y32r2与圆 x2y216 的位置关系不可能是 A.外离 B.外切 C.相交 D.内切 答案 AB 解析 两圆的圆心距为 d 102302 10,两圆的半。

3、2.3.4圆与圆的位置关系一、选择题1圆(x3)2(y2)21与圆x2y214x2y140的位置关系是()A外切 B内切 C相交 D外离考点圆与圆的位置关系题点判断两圆的位置关系答案B解析圆x2y214x2y140变形为(x7)2(y1)236,圆心坐标为(7,1),半径为r16,圆(x3)2(y2)21的圆心坐标为(3,2),半径为r21,所以圆心距d561r1r2,所以两圆内切2圆x2y21与圆x2y22x2y10的交点坐标为()A(1,0)和(0,1) B(1,0)和(0,1)C(1,0)和(0,1) D(1,0)和(0,1)考点题点答案C解析由解得或所以两圆的交点坐标为(1,0)和(0,1)3圆x2y24与圆(x4)2(y7)21公切线的条数为()A1 B2 C3 D4考点圆与圆的。

4、2.5.2 圆与圆的位置关系圆与圆的位置关系 课标要求 素养要求 1.能根据给定的圆的方程判断圆与圆的位置关系. 2.掌握圆与圆的位置关系的代数判定方法与几何 判定方法. 3.能利用圆与圆的位置关系解决有关问题. 通过圆与圆的位置关系的判 。

5、2.2.3圆与圆的位置关系学习目标1.理解圆与圆的位置关系的种类.2.掌握圆与圆的位置关系的代数判定方法与几何判定方法,能够利用上述方法判定两圆的位置关系.3.体会根据圆的对称性灵活处理问题的方法和优越性.知识点两圆位置关系的判定1.几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1,r2的关系dr1r2dr1r2|r1r2|dr1r2d|r1r2|d|r1r2|2.代数法:通过两圆方程组成方程组的公共解的个数进行判断.一元二次方程一、两圆的位置关系命题角度1两圆位置关系的判断例1已。

6、2.3.4圆与圆的位置关系学习目标1.理解圆与圆的位置关系的种类.2.掌握圆与圆的位置关系的代数判定方法与几何判定方法,能够利用上述方法判定两圆的位置关系.3.体会根据圆的对称性灵活处理问题的方法和它的优越性知识点两圆的位置关系圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1,r2的关系dr1r2dr1r2|r1r2|0),C2:x2y2D2xE2yF20(DE4F20),联立方程,得则方程组解的个数与两圆的位置关系如下:方程组解的个数2组1组0组两圆的公共点。

7、73.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系基础过关1以(2,1)为圆心且与直线3x4y50相切的圆的标准方程为()A(x2)2(y1)23 B(x2)2(y1)23C(x2)2(y1)29 D(x2)2(y1)29答案C解析根据题意知点(2,1)到直线3x4y50的距离与半径长相等,所以r3,所以所求圆的标准方程为(x2)2(y1)29.2圆x2y24上的点到直线xy20的距离的最大值为()A2 B2C. D0答案A解析圆心(0,0)到直线xy20的距离d,所求最大距离为2.3直线l:y1k(x1)和圆x2y22y0的关系是()A相离 B相切或相交C相交 D相切答案C解析l过定点A(1,1),1212210,点A在圆上直线x1过点A且为圆的切。

8、2.3直线与圆、圆与圆的位置关系(一)基础过关1.已知圆C与直线xy0及xy40都相切,圆心在直线xy0上,则圆C的方程为()A.(x1)2(y1)22 B.(x1)2(y1)22C.(x1)2(y1)22 D.(x1)2(y1)22解析由条件知xy0与xy40都与圆相切,且平行,所以圆C的圆心C在直线xy20上.由得圆心C(1,1).又因为两平行线间距离d2,所以所求圆的半径长r,故圆C的方程为(x1)2(y1)22.答案B2.在圆x2y22x6y0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.5 B.10 C.15 D.20解析圆的方程化为标准形式为(x1)2(y3)210,由圆的性质可知ACBD,最长弦|AC|2,最短弦BD。

9、2.3直线与圆、圆与圆的位置关系(二)基础过关1.若圆C1:(x2)2(ym)29与圆C2:(xm)2(y1)24外切,则m的值为()A.2 B.5C.2或5 D.不确定解析两圆的圆心分别为(2,m),(m,1),两圆的半径分别为3,2,由题意得32,解得m2或5.答案C2.已知半径为1的动圆与圆(x5)2(y7)216相切,则动圆圆心的轨迹方程是()A.(x5)2(y7)225B.(x5)2(y7)217或(x5)2(y7)215C.(x5)2(y7)29D.(x5)2(y7)225或(x5)2(y7)29解析设动圆的圆心为(x,y),若相内切,则有413,即(x5)2(y7)29;若相外切,则有415,即(x5)2(y7)225,故所求动圆圆心的轨迹方程为(x5)2(y7)29或(x5)2(y7)225.。

10、第2课时圆与圆的位置关系基础过关1圆(x2)2y24与圆(x2)2(y1)29的位置关系为()A内切 B相交C外切 D相离答案B解析两圆圆心分别为(2,0),(2,1),半径长分别为2和3,圆心距d.32d32,两圆相交2圆C1:x2y22x2y20和圆C2:x2y24x2y10的公切线的条数为()A1 B2 C3 D4答案B解析圆C1:(x1)2(y1)24,圆心C1(1,1),半径长r12,圆C2:(x2)2(y1)24,圆心C2(2,1),半径长r22,两圆圆心距为|C1C2|,显然0|C1C2|4,即|r1r2|C1C2|r1r2,所以两圆相交,从而两圆有两条公切线3一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距。

11、第2课时圆与圆的位置关系学习目标 1掌握圆与圆的位置关系及判定方法2能利用直线与圆的位置关系解决简单的实际问题3体会用代数方法处理几何问题的思想知识链接1判断直线与圆的位置关系的两种方法为代数法、几何法2两圆的位置关系有外离、外切、相交、内切、内含预习导引1圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系dr1r2dr1r2|r1r2|dr1r2d|r1r2|d|r1r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断一元二。

12、,导入新课,讲授新课,当堂练习,课堂小结,24.1 旋转,第1课时 旋转的概念和性质,第24章 圆,学习目标,1. 掌握旋转的有关概念及基本性质.(重点) 2. 能够根据旋转的基本性质解决实际问题和进行简单 作图.(难点),导入新课,这些运动有什么共同的特点?,情境引入,讲授新课,B,O,A,问题 观察下面的现象,它有什么特点?,观察与思考,钟表的指针在不停地转动,从12时到4时,时针转动了_度.,120,把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.,思考:怎样来定义这种图形变换?,风车风轮的每个叶片在风的吹动下转动到新的位置.,怎样来定。

13、第 1 页(共 23 页)2019 年人教版九年级上学期24.1.1 圆同步练习卷一选择题(共 10 小题)1已知点 C 在线段 AB 上(点 C 与点 A、B 不重合) ,过点 A、B 的圆记作为圆 O1,过点B、C 的圆记作为圆 O2,过点 C、A 的圆记作为圆 O3,则下列说法中正确的是( )A圆 O1 可以经过点 C B点 C 可以在圆 O1 的内部C点 A 可以在圆 O2 的内部 D点 B 可以在圆 O3 的内部2下列说法错误的是( )A长度相等的两条弧是等弧B直径是圆中最长的弦C面积相等的两个圆是等圆D半径相等的两个半圆是等弧3以下说法正确的个数有( )半圆是弧三角形的角平分线是射。

14、第 1 页(共 16 页)2019 年人教版九年级上学期24.1.1 圆同步练习卷一选择题(共 8 小题)1直径为 1 的圆的周长是( )A B C2 D42已知 AB 是半径为 5 的圆的一条弦,则 AB 的长不可能是( )A4 B8 C10 D123如图,AB 是O 的直径,点 C、D 在O 上,且点 C、D 在 AB 的异侧,连结AD、OD 、OC 若AOC70 ,且 ADOC,则AOD 的度数为( )A70 B60 C50 D404下列说法:直径是弦; 长度相等的两条弧是等弧; 任何一条直径所在的直线都是圆的对称轴;任何一条直径都是圆的对称轴,其中正确的有( )A1 个 B2 个 C3 个 D4 个5下列说法:(1)长度相等的。

15、24.1 圆的有关性质,第二十四章 圆,24.1.1 圆,导入新课,讲授新课,当堂练习,课堂小结,1.认识圆,理解圆的本质属性.(重点) 2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.(难点) 3.初步了解点与圆的位置关系.,学习目标,导入新课,观察与思考,观察下列生活中的图片,找一找你所熟悉的图形.,视频:生活中的圆,骑车运动,看了此画,你有何想法?,思考:车轮为什么做成圆形?做成三角形、正方形可以吗?,车轮为圆形的原理分析:(下图为FLASH动画,点击),情景:一些学生正在做投圈游戏,他们。

16、2 24 4. .1 1 圆的有关性质圆的有关性质 24.1 圆的有关性质 24.1.1 24.1.1 圆圆 人教版人教版 数学数学 九九年级年级 上册上册 2 24 4. .1 1 圆的有关性质圆的有关性质 观察下列生活中的图片,找一找你。

17、2018-2019 学年度人教版数学九年级上册同步练习:24.1.1 圆一选择题(共 15 小题)1下列说法错误的是( )A直径是圆中最长的弦B长度相等的两条弧是等弧C面积相等的两个圆是等圆D半径相等的两个半圆是等弧2如图,O 的直径 AB 与弦 CD 的延长线交于点 E,若 DE=OB,AOC=84,则E 等于( )A42 B28 C21 D203如图,在O 中,弦的条数是( )A2 B3C 4 D以上均不正确4以下说法正确的个数有( )半圆是弧三角形的角平分线是射线在一个三角形中至少有一个角不大于 60过圆内一点可以画无数条弦所有角的度数都相等的多边形叫做正多边形A1 个 B2 个 C3 。

18、第二十四章 圆 24.1 圆 24.1.1 圆,1.在探索过程中认识圆,理解圆的本质属性. 2.了解弦,弧,半圆,优弧,劣弧,同心圆,等圆,等弧等 与圆有关的概念,理解概念之间的区别和联系. 3.让学生在动手实践中探索并初步了解点和圆的位置关系.,圆是生活中常见的图形,许多物体都给我们以圆的形象.,观察车轮,你发现了什么?,一石激起千层浪,乐在其中,圆的世界,奥运五环,福建土楼,一、 创设情境 引入新课,祥 子,小憩片刻,圆的世界,如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆,r,固定的端点O叫做圆心,。

19、,第24章,人教版九年级上册,24.1圆、垂径定理、圆心角、圆周角(1),24.1.1圆的有关概念,学习目标:,1.感受生活中存在圆形及圆的形成过程,理解圆的概念。2.通过对圆的相关概念的理解,能够从图形中识别“弦、直径”、“弧、优弧、劣弧”、“半圆、等圆、等弧”。3.能应用圆的有关概念解决问题。,圆是生活中常见的图形,许多物体都给我们以圆的形象.,感知圆的世界,圆是生活中常见的图形,许多物体都给我们以圆的形象.,感知圆的世界,生活剪影,一石激起千层浪,奥运五环,福建土楼,乐在其中,小憩片刻,祥子,如图,观察画圆的过程,你能由此说出。

20、241 圆的有关性质241.1 圆1认识圆,理解圆的本质属性2认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系3利用圆的有关概念进行简单的证明和计算一、情境导入在我们日常生活中常常可以看到有许多圆形物体,例如茶碗的碗口、锅盖、太阳、车轮、射击用的靶子等都是圆的,怎样画出一个圆呢?木工师傅是用一根黑线来画圆的,给你一根细绳、一个图钉和一支铅笔,你能画出一个圆吗?二、合作探究探究点:圆的有关概念【类型一】圆的有关概念的理解有下列五个说法:半径确定了,圆就确定了;直径是。

【24.1.1圆】相关PPT文档
2021年人教版九年级上24.1.1圆ppt课件
人教版数学九年级上24.1.1圆课件
24.1.1《圆的有关概念》课件
【24.1.1圆】相关DOC文档
2.5.2圆与圆的位置关系 学案(含答案)
2.2.3 圆与圆的位置关系 学案(含答案)
2.3.4 圆与圆的位置关系 学案(含答案)
《24.1.1圆》教案
标签 > 24.1.1圆[编号:126475]