2020广东中考数学一轮复习课件第4章 第6讲 解直角三角形

第二部分第三章第3讲 1如图所示,在等腰直角三角形ABC中,C90,点D在CB的延长线上,且BDAB,求ADB的正切值 解:在等腰直角三角形ABC中,BCAC, 根据勾股定理得ABAC,则BDABAC CDCBBD(1)AC则tanADB1. 2(2019巴彦淖尔一模)如图,在等腰RtABC中,C9

2020广东中考数学一轮复习课件第4章 第6讲 解直角三角形Tag内容描述:

1、第二部分第三章第3讲1如图所示,在等腰直角三角形ABC中,C90,点D在CB的延长线上,且BDAB,求ADB的正切值解:在等腰直角三角形ABC中,BCAC,根据勾股定理得ABAC,则BDABACCDCBBD(1)AC则tanADB1.2(2019巴彦淖尔一模)如图,在等腰RtABC中,C90,AC6,D是AC上一点,且tanDBA.(1)求AD的长;(2)求sinDBC的值解:(1)过点D作DHAB于点H,等腰三角形ABC,C90,A45,AHDH.设AHDHx.tanDBA,BH5x,AB6x.AC6,由勾股定理可知AB6.x,AHDH.由勾股定理可知AD2.(2)由(1)知AD2,DC4.由勾股定理可知DB2,sinDBC.3(2019鞍山二模)某海域有A,B,C三艘船正在捕鱼。

2、第18讲 直角三角形与三角函数,总纲目录,泰安考情分析,基础知识过关,知识点一 直角三角形的性质和判定 1.直角三角形的性质 (1)直角三角形的两个锐角 互余 . (2)在直角三角形中,30的角所对的直角边等于斜边的 一半 . (3)勾股定理:直角三角形两条直角边的平方和等于 斜边的平 方 . (4)直角三角形斜边上的中线等于斜边的 一半 .,2.直角三角形的判定 (1)有两个锐角 互余 的三角形是直角三角形. (2)如果三角形的两直角边长为a,b,斜边长为c,且满足 a2+b2=c2 ,那么这个三角形是直角三角形.温馨提示 (1)勾股定理阐述的是直角三角形中三边之间的数量。

3、第四章 三角形,第一部分 基础过关,第3讲 全等三角形,3,考情通览,4,5,1全等三角形的概念及判定 (1)能够完全重合的两个三角形叫做全等三角形 (2)全等三角形的判定有:“边边边”(SSS)、“边角边”(SAS)、“角角边”(AAS)、“角边角”(ASA) 特别的:两个直角三角形的判定还有“斜边直角边”(HL),知识梳理,要点回顾,6,1.已知:如图,点B、F、C、E在一条直线上,AD,ACDF.添加一个条件,使得ABCDEF,并加以证明你添加的条件是 _(不添加辅助线),答案不唯一,如ABDE,或BE,或ACBDFE,即时演练,7,2全等三角形的性质 全等三角形的对应边相等,对应。

4、第三章 解答题(二)突破8分题,第3讲 解直角三角形,第二部分 专题突破,3,方法突破,4,【方法归纳】解直角三角形时,一般选取既含未知边(角)又含有已知边(或角)的直角三角形,通过锐角三角函数的定义或勾股定理,建构已知或未知之间的桥梁,从而实现求解若所求的线段(或角)不能直接求解,可以通过作出点到直线的距离或三角形高线,进而转化成直角三角形求解,5,6,7,8,【思路点拨】(1)分别在RtAPO,RtBOP中,求出AO,BO的长,从而可求得AB的长;(2)已知时间则可以根据路程公式求得其速度,将限速与其速度进行比较,若大于限速则超速,否则没有超。

5、第四章 三角形,第一部分 基础过关,第4讲 特殊三角形,3,考情通览,4,5,1等腰三角形的判定与性质 (1)定义:有两条边相等的三角形叫做等腰三角形 (2)性质及相关定理: 等腰三角形的两个底角相等(简写成“等边对等角”); 等腰三角形的顶角平分线、底边的中线、底边上的高互相重合(简写成“三线合一”),知识梳理,要点回顾,6,(3)等腰三角形的判定: 有两条边相等的三角形叫做等腰三角形; 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”),7,1.(1)如图,ABC中,ABAC,BAC50,D是BC边的中点,则BAD_. (2)如图,在A。

6、第32讲 锐角三角函数和解直角三角形1. 2cos 60的值等于(A)A1 B. C. D22. 如图,在RtABC中,CD是斜边AB上的中线,已知CD5,AC6,则tan B的值是(C)A. B. C.D. 3. 如图,直径为10的A经过点C(0,5)和点O(0,0),B是y轴右侧A优弧上一点,则cosOBC的值为(B)A. B. C. D.4. 如图,一艘海轮位于灯塔P的南偏东45方向,距离灯塔60海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30方向上的B处,这时,B处与灯塔P的距离为(B)A60海里 B60海里C30海里 D30海里5. 如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方。

7、第17讲 等腰三角形与直角三角形,等腰三角形,1.等腰三角形的概念 有 相等的三角形叫做等腰三角形; 都相等的三角形叫做等边三角形.,两边,三条边,2.等腰三角形的性质与判定,等边对等角,顶角平分线,底边上的高,三线合一,顶角平分线,相等,两角,等角对等边,3.等边三角形的性质与判定,60,轴,3,三条,角,60,等腰三角形,直角三角形的性质与判定,互余,平方和,平方,一半,一半,直角,互余,平方和,平方,两个重要互逆定理,1.角平分线:(1)性质:角平分线上的点到角两边的距离 . (2)判定:角的内部到角两边 的点在角的平分线上. 2.线段垂直平分线:(1)性质:线段。

8、第20讲 直角三角形1. 下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是(C)A3,4,5 B6,8,10 C.,2, D5,12,132. 如图,在ABC中,ACB90,A20,若将ABC沿CD折叠,使B点落在AC边上的E处,则ADE的度数是(C)A30 B40C50 D553. 如图,某同学将一块三角板叠放在直尺上,若120,则2的度数为(C)A40 B60C70 D804. 在RtABC中,C90,AC9,BC12,则点C到AB的距离是(A)A. B. C. D.5. 。

9、第18讲解直角三角形(参考用时:45分钟)A层(基础)1.(2019广州)如图,有一斜坡AB,坡顶B离地面的高度BC为30 m,斜坡的倾斜角是BAC,若tanBAC=25,则此斜坡的水平距离AC为(A)(A)75 m (B)50 m (C)30 m (D)12 m解析:BCA=90,tanBAC=25,BC=30 m,tanBAC=25=BCAC=30AC,解得AC=75 m.故选A.2.在ABC中,若|sin A-32|+(1-tan B)2=0,则C的度数是(C)(A)45 (B)60 (C)75 (D)105解析:|sin A-32|+(1-tan B)2=0,sin A-32=0,1-tan B=0,sin A=32,tan B=1.A=60,B=45.C=180-60-45=75.故选C.3。

10、第 4 课时 解直角三角形1在A,B 都是锐角的ABC 中, 20,则C 的度数是( |cos A 32| (sin B 22)C )A75 B90 C105 D1202ABC 在网格中的位置如图所示( 每个小正方体边长为 1),AD BC 于 D,下列选项中,错误的是( C )Asin cos Btan C2Csin cos Dtan 13如图,边长为 1 的小正方形构成的网格中,半径为 1 的O 的圆心 O 在格点上,则BED 的正切值等于( D )A B 255 255C2 D124一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线, BA 与 CA 的夹角为 .现要在楼梯上铺一条地毯,已知 CA4 米,楼梯宽度 1 米,则地毯的面积至少需要( D )A 米 2 B 。

11、,第5课时 解直角三角形,考点突破,3,中考特训,4,广东中考,5,课前小测,C,第2题图,D,课前小测,A,第3题图,课前小测,4如图,一艘船以40 nmile/h的速度由西向东航行,航行到A处时,测得灯塔P在船的北偏东30方向上,继续航行2.5 h,到达B处,测得灯塔P在船的北偏西60方向上,此时船到灯塔的距离为_nmile.(结果保留根号) 第4题图,课前小测,知识精点,知识点一:锐角三角函数,2特殊角三角函数值,知识精点,知识精点,知识点二:解直角三角形,1解直角三角形:由直角三角形中的已知元素, 求出其余未知元素的过程叫做解直角三角形 2解直角三角形的类型:。

12、第18讲 解直角三角形,锐角三角函数,在RtABC中,C=90,设BC=a,CA=b,AB=c,锐角A的三角函数是A的正弦记作sin A= ;A的余弦记作cos A= ;A的正切记作tan A= ;它们统称为锐角A的三角函数.,特殊角的三角函数值,解直角三角形,1.定义:在直角三角形中,由已知元素,求出 的过程,叫做解直角三角形.解直角三角形时,已知的元素中应至少有一个是 . 2.解直角三角形的依据 RtABC中,C=90,设BC=a,CA=b,AB=c. (1)三边关系: . (2)两锐角关系: . (3)边角之间的关系: sin A= ;cos A= ;tan A= .,未知元素,边,a2+b2=c2,A+B=90,3.解直角三角形应用中的有关概念 (1)仰角和。

13、1 课标要求 (1)利用相似的直角三角形,探索并认识锐角三角函数(sin A ,cos A,tan A),知道30,45,60角的三角函数值 (2)会使用计算器由已知锐角求它的三角函数值,由已知三 角函数值求它的对应锐角 (3)能用锐角三角函数解直角三角形,能用相关知识解决一 些简单的实际问题. 考情分析 该内容主要是以填空、选择、综合解答题的形式来考查 ,分值为310分主要考查锐角三角函数的定义、特殊角 函数值的有关计算、用三角函数解决与直角三角形有关的 简单实际问题预测2020年中考,以上考点依然会出现, 建议加强定义的理解,掌握公式,灵活运用。

14、第3 讲,解直角三角形,第五章 图形与变换,2020年广东中考复习课件,1.利用相似的直角三角形,探索并认识锐角三角函数(sin A,,cos A,tan A),知道30,45,60角的三角函数值.,2.会使用计算器由已知锐角求它的三角函数值,由已知三,角函数值求它对应的锐角.,3.能用锐角三角函数解直角三角形,能用相关知识解决一,些实际问题.,1.(2018年广西柳州)如图5-3-1,在 RtABC 中,C90,,BC4,AC3,则 sin B(,) 图 5-3-1,A.,3 5,B.,4 5,C.,3 7,D.,3 4,答案:A,答案:A,3.(2017 年湖北宜昌)ABC 在网格中的位置如图 5-3-2(每 个小正方形边长为 1),ADBC 。

15、第20讲 直角三角形,一、直角三角形的性质 1. 直角三角形的两锐角_;等腰直角三角形的两锐角都是_ 2. 在直角三角形中,如果一个锐角等于_,那么它所对的直角边等于斜边的一半 3. 直角三角形斜边上的中线等于斜边的_ 二、勾股定理 直角三角形的两条_的平方和等于_的平方设直角边分别为a,b,斜边为c,用代数式可表示为_,互余,45,30,一半,直角边,斜边,a2b2c2,三、勾股定理的逆定理 如果三角形两边的_等于第三边的_,那么这个三角形是直角三角形 四、直角三角形的判定 1. 有一个角是_的三角形是直角三角形 2. 如果一个三角形一边上的_等于这边。

16、安徽中考20142018 考情分析,基础知识梳理,中考真题汇编,安徽中考20142018 考情分析,说明:从上表看出本节内容属于安徽中考必考知识,连续五年在解答题中考查了“解直角三角形的应用”,分值10分或者8分,难度在“一般”到“较难”之间,除2017年、2018年外,都是结合特殊角进行命题 由于“解直角三角形的应用”涵盖了锐角三角函数的意义、特殊角的函数值,渗透了“数形结合、转化、方程建模、应用意识”等,预测2019年安徽中考会延续考查,其中,涉及“方位角”的可能性较大,需要注意的是,安徽中考常把特殊角的三角函数值渗透到计算中考。

17、第一部分第四章第6讲1(2019嘉兴)如图,已知O上三点A,B,C,半径OC1,ABC30,切线PA交OC延长线于点P,则PA的长为(B)A2BCD2(2019长沙)如图,一艘轮船从位于灯塔C的北偏东60方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45方向上的B处,这时轮船B与小岛A的距离是(D)A30 n mileB60 n mileC120 n mileD(3030)n mile3(2019枣庄)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6 m的位置,在D处测得旗杆顶端A的仰角为53,若测角仪的高度是1.5 m,则旗杆AB的高度约为9.5m(精确。

18、第四章 三角形,第一部分 基础过关,第6讲 解直角三角形,3,考情通览,4,1直角三角形的边角关系 如图,在RtABC中,C90,A,B,C的对边分别为a,b,c,则: (1)三边关系:a2b2c2(勾股定理) (2)三角关系:ABC180;AB90.,知识梳理,要点回顾,5,1.如图,ABC中,C90,A70,BC5,则B_,AC_,AB_.,20,即时演练,6,2解直角三角形 (1)解直角三角形的概念:在直角三角形的两个锐角、三条边共五个元素中,已知两个(至少一个是边)元素,求出其余三个元素的过程,叫做解直角三角形 (2)注意几个名词: 仰角和俯角:在进行测量时,从下往上看, 视线和水平线的。

【2020广东中考数学一轮复习】相关PPT文档
【2020广东中考数学一轮复习】相关DOC文档
【2020广东中考数学一轮复习】相关其他文档
标签 > 2020广东中考数学一轮复习课件第4章 第6讲 解直角三角形[编号:127425]