2.3.2 平面向量的坐标运算一同步练习含答案

6.3.5 平面向量数量积的坐标表示平面向量数量积的坐标表示 A 组 基础巩固练 一选择题 1已知平面向量 a1,m,b2,5,cm,0,且acab,则 m A3 10 B3 10 C3 10 D3 10 2a4,3,b5,6,则 3a24,6.3.4 平面向量数乘运算的坐标表示平面向量数乘运算的坐

2.3.2 平面向量的坐标运算一同步练习含答案Tag内容描述:

1、6.3.5 平面向量数量积的坐标表示平面向量数量积的坐标表示 A 组 基础巩固练 一选择题 1已知平面向量 a1,m,b2,5,cm,0,且acab,则 m A3 10 B3 10 C3 10 D3 10 2a4,3,b5,6,则 3a24。

2、6.3.4 平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示 A 组 素养自测 一选择题 1已知向量 a1,m,bm,2,若 ab,则实数 m 等于 A 2 B 2 C 2或 2 D0 2已知点 A1,1,点 B2,y,向量 a1,2,。

3、6.3.3 平面向量加减运算的坐标表示平面向量加减运算的坐标表示 一选择题一选择题 1设 i,j 是平面直角坐标系内分别与 x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA4i2j,OB3i4j,则 2OAOB的坐标是 A1,。

4、6.3.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 6.3.3 平面向量加减运算的坐标表示平面向量加减运算的坐标表示 A 组 基础巩固练 一选择题 1如果用 i,j 分别表示 x 轴和 y 轴正方向上的单位向量,且 A2,。

5、第2课时平面向量数量积的坐标运算一、选择题1已知a(3,1),b(1,2),则a与b的夹角为()A. B. C. D.考点平面向量夹角的坐标表示与应用题点求坐标形式下的向量的夹角答案B解析|a|,|b|,ab5.cosa,b.又a,b的夹角范围为0,a与b的夹角为.2设向量a(2,0),b(1,1),则下列结论中正确的是()A|a|b| Bab0Cab D(ab)b考点平面向量平行与垂直的坐标表示与应用题点向量垂直的坐标表示的综合应用答案D解析ab(1,1),所以(ab)b110,所以(ab)b.3已知向量a(0,2),b(1,),则向量a在b方向上的投影为()A. B3 C D3考点平面向量投影的坐标表示与应用题点平面向。

6、23.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 23.3 平面向量的坐标运算平面向量的坐标运算 一、选择题 1已知 M(2,3),N(3,1),则NM 的坐标是( ) A(2,1) B(1,2) C(2,1) D(1,2) 考点 平面向量的正交分解及坐标表示 题点 平面向量的正交分解及坐标表示 答案 B 解析 NM (2,3)(3,1)(1,2) 2已知 a1 2b(1,2)。

7、2.3.2平面向量的坐标运算第1课时平面向量的坐标表示及坐标运算一、选择题1已知M(2,3),N(3,1),则的坐标是()A(2,1) B(1,2) C(2,1) D(1,2)考点平面向量的正交分解及坐标表示题点平面向量的正交分解及坐标表示答案B解析(2,3)(3,1)(1,2)2已知ab(1,2),ab(4,10),则a等于()A(2,2) B(2,2)C(2,2) D(2,2)考点平面向量坐标运算的应用题点利用平面向量的坐标运算求向量的坐标答案D3若向量a(1,1),b(1,1),c(4,2),则c等于()A3ab B3abCa3b Da3b考点平面向量的坐标运算的应用题点用坐标形式下的基底表示向量答案A解析设cxayb,则解得c3ab.4已知。

8、第2课时平面向量数量积的坐标运算学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直知识点一平面向量数量积的坐标表示若向量a(x1,y1),b(x2,y2).数量积abx1x2y1y2向量垂直abx1x2y1y20知识点二平面向量的模向量的模及两点间的距离向量模a(x,y)|a|以A(x1,y1),B(x2,y2)为端点的向量|知识点三向量的夹角设a,b都是非零向量,a(x1,y1),b(x2,y2),是a与b的夹角,则cos .。

9、23.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 23.3 平面向量的坐标运算平面向量的坐标运算 学习目标 1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘 向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来 知识点一 平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解 知识点二 平面向量的坐标表。

10、2.3.2平面向量的坐标运算第1课时平面向量的坐标表示及坐标运算学习目标1.掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来知识点一平面向量的坐标表示1平面向量的坐标(1)在平面直角坐标系中,分别取与x轴,y轴方向相同的两个单位向量i,j作为基底对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对有序实数x,y,使得axiyj.平面内的任一向量a都可由x,y唯一确定,我们把有序数对(x,y)叫做向量a的(直角)坐标,记作a(x,y)(2)在平面直角坐标平面。

11、2.3.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 2.3.3 平面向量的坐标运算平面向量的坐标运算 基础过关 1给出下面几种说法: 相等向量的坐标相同; 平面上一个向量对应于平面上唯一的坐标; 一个坐标对应于唯一的一个向量; 平面上一个点与以原点为始点、该点为终点的向量一一对应 其中正确说法的个数是( ) A1 B2 C3 D4 解析 由向量坐标的定义不难看出一个坐标可对应无数。

12、2.3.2平面向量的坐标运算(二) 基础过关1.已知a(1,2),b(2,y),若ab,则y的值是()A.4 B.4 C.2 D.2解析ab,(1)y220,y4.答案B2.若a(2cos ,1),b(sin ,1),且ab,则tan 等于()A.2 B. C.2 D.解析ab,2cos 1sin .tan 2.答案A3.设向量a(1,2),b(2,3),若向量ab与向量c(5,6)共线,则的值为_.解析由已知得ab(12,23),向量ab与向量c(5,6)共线,(12)(6)(23)(5)0,解得.答案4.已知向量a(1,2),b(0,1),设uakb,v2ab,若uv,则实数k的值为_.解析u(1,2)k(0,1)(1,2k),v。

13、2.3.2平面向量的坐标运算(一) 基础过关1.已知向量a(1,2),b(2,3),c(3,4),且c1a2b,则12的值为()A.3 B.1 C.1 D.3解析由1a2b(122,2132),c(3,4),c1a2b,得解得121.答案B2.在平行四边形ABCD中,AC为一条对角线.若(2,4),(1,3),则为()A.(2,1) B.(3,2)C.(2,5) D.(3,5)解析,(1,1).(3,5).答案D3.已知点A(1,5),向量a(1,2),若3a,则点B的坐标是_.解析设B(x,y),则由3a,得(x1,y5)(3,6),解得x4,y11,所以点B的坐标是(4,11).答案(4,11)4.分别取i,j为x轴、y轴正方向上的单位向量,已知向量xiyj,点B和点A关于x轴对称,。

【2.3.2 平面向量的坐标运算】相关DOC文档
标签 > 2.3.2 平面向量的坐标运算一同步练习含答案[编号:98866]