1.3 简单的逻辑联结词简单的逻辑联结词、全称量词与存在量词全称量词与存在量词 最新考纲 考情考向分析 1.了解逻辑联结词“或”“且”“非”的含义 2.理解全称量词和存在量词的意义 3.能正确地对含有一个量词的命题进行否定. 逻辑联结词和含有一个量词的命题的否定 是高考的重点;命题的真假判断常以函
2.3.1 全称量词命题与存在量词命题 学案含答案Tag内容描述:
1、 1.3 简单的逻辑联结词简单的逻辑联结词、全称量词与存在量词全称量词与存在量词 最新考纲 考情考向分析 1.了解逻辑联结词“或”“且”“非”的含义 2.理解全称量词和存在量词的意义 3.能正确地对含有一个量词的命题进行否定. 逻辑联结词和含有一个量词的命题的否定 是高考的重点;命题的真假判断常以函数、 不等式为载体,考查学生的推理判断能力, 题型为选择、填空题,低档难度. 1简单的逻辑联结词 (1)命题中的且、或、非叫做逻辑联结词 (2)命题 p 且 q、p 或 q、非 p 的真假判断 p q p 且 q p 或 q 非 p 真 真 真 真 假 真 假 假 真 。
2、1 15 5 全称量词与存在量词全称量词与存在量词 1 15.15.1 全称量词与存在量词全称量词与存在量词 学习目标 1.理解全称量词、全称量词命题的定义.2.理解存在量词、存在量词命题的定义. 3.会判断一个命题是全称量词命题还是存在量词命题,并会判断它们的真假 知识点 全称量词和存在量词 全称量词 存在量词 量词 所有的、任意一个 存在一个、至少有一个 符号 命题 含有全称量词的命题是。
3、3 全称量词与存在量词全称量词与存在量词 3.1 全称量词与全称命题全称量词与全称命题 3.2 存在量词与特称命题存在量词与特称命题 学习目标 1.理解全称量词与存在量词的含义.2.理解并掌握全称命题和特称命题的概念.3. 能判定全称命题与特称命题的真假,并掌握其判定方法. 知识点一 全称量词与全称命题 定义 全称量词 在指定范围内,表示整体或全部的含义的短语,如“所有的”“任意一 个”等 全称命题 含有全称量词的命题 特别提醒:有些全称命题中的全称量词是省略的. 知识点二 存在量词与特称命题 定义 存在量词 表示个别或一部分的含义。
4、 3 全称量词与存在量词全称量词与存在量词 3.1 全称量词与全称命题全称量词与全称命题 3.2 存在量词与特称命题存在量词与特称命题 一、选择题 1.下列说法正确的个数是( ) 命题“所有的四边形都是矩形”是特称命题; 命题“任意 xR,x222 考点 特称命题的真假判断 题点 特称命题的真假判断 答案 B 3.有四个关于三角函数的命题: p1:存在 xR,sin2 x 2cos 2 x 2 1 2; p2:存在 x,yR,sin(xy)sin xsin y; p3:对任意的 x0, 1cos 2x 2 sin x; p4:sin xcos yxy 2. 其中假命题为( ) A.p1,p4 B.p2,p4 C.p1,p3 D.p3,p4 考点 含有一个量。
5、 3 全称量词与存在量词全称量词与存在量词 31 全称量词与全称命题全称量词与全称命题 32 存在量词与特称命题存在量词与特称命题 一、选择题 1下列说法正确的个数是( ) 命题“所有的四边形都是矩形”是特称命题; 命题“任意 xR,x220”是全称命题; 命题“存在 xR,x24x40”是特称命题 A0 B1 C2 D3 考点 量词与命题 题点 特称(全称)命题的识别 答案 C 解析 只有正确 2以下四个命题既是特称命题又是真命题的是( ) A锐角三角形的内角是锐角或钝角 B至少有一个实数 x,使 x20 C两个无理数的和必是无理数 D存在一个负数 x,使1 x2 考点 存在量。
6、全称量词命题和存在量词命题的否定全称量词命题和存在量词命题的否定 学习目标 1.通过实例总结含有一个量词的命题与它们的否定在形式上的变化规律.2.能正 确地对含有一个量词的命题进行否定 知识点 含量词的命题.。
7、1 1. .2.22.2 全称量词命题与存在量词命题的否定全称量词命题与存在量词命题的否定 学习目标 1.掌握命题的否定的概念,能够对一个命题进行否定.2.通过实例总结含有一个量 词的命题与它们的否定在形式上的变化规律.3.能正确地对含有一个量词的命题进行否定 知识点一 命题的否定 1定义:一般地,对命题 p 加以否定,就得到一个新的命题,记作“綈 p”,读作“非 p” 或“p 的否定” 2命题。
8、2 2. .3.23.2 全称量词命题与存在量词命题的否定全称量词命题与存在量词命题的否定 学习目标 1.通过实例总结含有一个量词的命题与它们的否定在形式上的变化规律.2.能正 确地对含有一个量词的命题进行否定 知识点 含量词的命题的否定 p 綈 p 结论 全称量词命题xM,p(x) xM,綈 p(x) 全称量词命题的否定是存在量词 命题 存在量词命题xM,p(x) xM,綈 p(x) 存在量词。
9、2.32.3 全称量词命题与存在量词命题全称量词命题与存在量词命题 2 2. .3.13.1 全称量词命题与存在量词命题全称量词命题与存在量词命题 学习目标 1.理解全称量词、全称量词命题的定义.2.理解存在量词、存在量词命题的定义. 3.会判断一个命题是全称量词命题还是存在量词命题,并会判断它们的真假 知识点 全称量词和存在量词 全称量词 存在量词 量词 所有、任意、每一个 存在、有的、有一个。