13.3.1等腰三角形

一、 选择题1、 (2018 北京市丰台区初二期末)如图,已知射线 OM以 O 为圆心,任意长为半径画弧,与射线 OM 交于点 A,再以点 A 为圆心 , AO 长为半径画弧,两弧交于点 B,画射线OB,那么AOB 的度数是A90 B60 C45 D30答案:B2 (2018 北京市海淀区八年级期末

13.3.1等腰三角形Tag内容描述:

1、一、 选择题1、 (2018 北京市丰台区初二期末)如图,已知射线 OM以 O 为圆心,任意长为半径画弧,与射线 OM 交于点 A,再以点 A 为圆心 , AO 长为半径画弧,两弧交于点 B,画射线OB,那么AOB 的度数是A90 B60 C45 D30答案:B2 (2018 北京市海淀区八年级期末)等腰三角形的一个角是 70,它的底角的大小为A70 B40 C70 或 40 D70或 55答案:D3 ( 2018 北京市石景山区初二期末) 等腰三角形的一个外角是 100,则它的顶角的度数为A80 B80或 20 C20 D80或 50 答案:B4 (2018 北京市顺义区八年级期末)已知等腰三角形的两边长分别为 和 ,则。

2、第四章 三角形,第18讲 等腰三角形、等边三角形、直角三角形,01,02,03,04,目录导航,课 前 预 习,80,22,B,C,A,D,9或1,考 点 梳 理,垂直平分线,三,60,一半,中线,直角,一半,课 堂 精 讲,B,65,37,50或20或80,A,C,3,A,(1,0),往年 中 考,A,。

3、 等腰三角形等腰三角形 A B C 建筑工人在盖房子时,用一块等腰三建筑工人在盖房子时,用一块等腰三 角板放在梁上,从顶点系一重物,如果系角板放在梁上,从顶点系一重物,如果系 重物的绳子正好经过三角板底边中点,就重物的绳子正好经过三角板底边中点,就 说房梁是水平说房梁是水平 的,你知道其中的,你知道其中 反映了什么数学反映了什么数学 原理原理? ? 在在ABC中,中,AB = AC。。

4、7.5 等腰三角形和等边三角形一、填空。1. 一个三角形的一个内角的度数是108,这个三角形是( )三角形;一个三角形三条边的长度分别为7厘米、8厘米、7厘米,这个三角形是( )三角形。2. 一个三角形两个内角的度数分别为35、67,另一个内角的度数是( ),这是一个( )三角形。3. 等腰三角形的底角是75,顶角是( ),等边三角形的每个内角都是( )。4. 在一个直角三角形中,一个锐角是75,另一个锐角是( )。5. 一个等腰三角形的一条腰长5厘米,底边长4厘米,围成这个等腰三角形至少需要( )厘米长的绳子。二、判断。(对的画“”,。

5、13.3 等腰三角形,第十三章 轴对称,导入新课,讲授新课,当堂练习,课堂小结,第1课时 等腰三角形的性质,八年级数学上(RJ)教学课件,1.理解并掌握等腰三角形的性质.(重点) 2.经历等腰三角形的性质的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点),导入新课,等腰三角形,情境引入,定义及相关概念 有两条边相等的三角形叫做等腰三角形.,等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.,底边,讲授新课,剪一剪:把一张长方形的纸按图中的红线对折,并剪去阴影部分(一个直角三角形),再。

6、13.3 等腰三角形,第十三章 轴对称,导入新课,讲授新课,当堂练习,课堂小结,第2课时 等腰三角形的判定,八年级数学上(RJ),1 .掌握等腰三角形的判定方法.(重点) 2.掌握等腰三角形的判定定理,并运用其进行证明和计算.(难点),导入新课,情境引入,在ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下一条底边BC和一个底角C,请问,有没有办法把原来的等腰三角形画出来?,A,B,C,A,思考:如图,在ABC中,如果B=C,那么AB与AC之间有什么关系吗?,我测量后发现AB与AC相等.,3cm,3cm,讲授新课,A,B,C,如图,位于海上B、C两处的两艘救生船。

7、2.2 等腰三角形A 组1若一个等腰三角形的两边长分别为 4,8,则它的周长为(C)A. 12 B. 16C. 20 D. 16 或 202如果等腰三角形的一边长是 8,周长是 18,那么它的腰长是(D)A. 8 B. 5C. 2 D. 8 或 53若等腰三角形的腰长与底边长之比为 23,其周长为 28,则该等腰三角形的底边长为_12_4已知一等腰三角形的两边长 x,y 满足方程组 则此等腰三角形的2x y 3,3x 2y 8, )周长为_5_5如图,在ABC 中,ABAC ,AD 是 BC 边上的中线,点 E,F 是 AD 的三等分点若ABC 的面积为 12 cm2,则图中阴影部分的面积为_6_cm 2.,(第 5 题) ,(第 6 题)6如图,AB,AC。

8、要题随堂演练1(2018湖州中考)如图,AD,CE 分别是ABC 的中线和角平分线若ABAC,CAD20,则ACE 的度数是( )A20 B35 C40 D702(2018福建中考)如图,等边三角形 ABC 中,ADBC,垂足为点 D,点 E 在线段 AD 上,EBC45,则ACE 等于( )A15 B30 C45 D603(2018雅安中考)已知:如图,在ABC 中,ABAC,C72,BC ,以点 B 为圆心,BC 为半径画弧,交 AC 于点 D,则线段 AD 的长为( 5)A2 B2 C. D.2 3 5 64(2018成都中考)等腰三角形的一个底角为 50,则它的顶角的度数为_5(2018邵阳中考)如图所示,在等腰ABC 中,ABA。

9、3 简单的轴对称图形,导入新课,讲授新课,当堂练习,课堂小结,第五章 生活中的轴对称,第1课时 等腰三角形的性质,1.理解并掌握等腰三角形的性质;(重点) 2.探索并掌握等腰三角形的轴对称性及其相关性质,能初步运用其解决有关问题(难点).,观察下列各种图形,判断是不是轴对称图形, 能找出对称轴吗?,复习巩固,导入新课,情境导入,观察下列图片,它们有什么共同的特征?,等腰三角形,等腰三角形,讲授新课,如图,在ABC中,AB=AC,则三角形为等腰三角形.,它的各部分名称分别是什么?,(1)相等的两条边都叫腰;,(2)另一边叫底边;,(3)两腰的夹角A叫顶角;,。

10、13.3 等腰三角形的性质,生活中的等腰三角形,生活中的等腰三角形,为什么是水平的,建筑工人在盖房子时,用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边中点,就说房梁是水平的,你知道为什么吗?,有两边相等的三角形是等腰三角形,知识回顾,相等的两边叫做腰,另一边叫做底边,腰,腰,底边,两腰的夹角叫做顶角,顶角,腰与底边的的夹角叫做底角,底角,知识回顾,1等腰三角形一腰为3cm,底为4cm,则它的周长是 _;,2等腰三角形一边长为3cm,另一边长为4cm,则它的周长是 _;,3等腰三角形的一边长为3cm,另一边长为8。

11、,等腰三角形和等边三角形,情境导入,探究新知,课堂小结,课后作业,三角形、平行四边形和梯形,课堂练习,7,1,量一量下面三角形每条边的长度,看看这些三角形有什么共同的特点。,两条边相等的三角形是等腰三角形。,上面等腰三角形的顶角和底角分别在哪里?指一指。,情境导入,返回,等腰三角形的底角相等。,等腰三角形底边上的高在它的对称轴上。,等腰三角形是轴对称图形。,探究新知,等腰三角形还有哪些特征?,返回,量一量,下面三角形3条边的长度都相等吗?,3条边都相等的三角形是等边三角形,也叫作正三角形。,你会像下面这样剪出一个等边三角形。

12、 一、选择题 12(2019烟台)如图,AB是的直径,直线DE与相切于点C,过点A,B分别作,垂足为点D,E,连接AC,BC若,则的长为( ) A B C D 第12题答图 【答案】D 【解题过程】连接OC, 因为, 所以 所以 因为AB是的直径, 所以, 所以, 所以, 在ADC与CED, 因为, 所以ADCCED, 所以 在。

13、一、选择题12(2019烟台)如图,AB是的直径,直线DE与相切于点C,过点A,B分别作,垂足为点D,E,连接AC,BC若,则的长为( )A B C D 第12题答图【答案】D【解题过程】连接OC,因为,所以所以因为AB是的直径,所以,所以,所以, 在ADC与CED, 因为,所以ADCCED,所以在RtACB中,所以,又因为,所以AOC是等边三角形,所以,因为直线DE与 相切于点C,所以,因为,所以AD/OC,所以,所以,所以,所以AOC是等边三角形,所以,所以的长为8(2019娄底)如图(2),边长为的等边ABC的内切圆的半径为( )A. 1 B C 2 D 【答案】A【解析】由等边三。

14、2.3 等腰三角形,我们前面已经学习了三角形的一些性质,那么等腰三角形除了具有一般三角形的性质外,还具有哪些特殊的性质呢?,新知探究,任意画一个等腰三角形ABC,其中AB=AC,如图.,作ABC 关于顶角平分线AD所在直线的轴反射,,由于1=2,AB=AC,因此:,D,1,2,射线AB的像是射线AC, 射线AC的像是射线 ; 线段AB的像是线段AC, 线段AC的像是线段 ; 点B的像是点C, 点C的像是点 ; 线段BC的像是线段CB. 从而等腰三角形ABC关于直线 对称.,AB,AB,B,AD,由于点D的像是点D, 因此线段DB的像是线段 , 从而AD是底边BC上的 . 由于射线DB的像是射线DC。

15、,南京市第二十九中学初中部 陈 吉,苏科数学,2.5 等腰三角形的轴对称性(3),苏科数学,等腰三角形有哪些性质?怎样判定一个三角形 是等腰三角形?,一、问题情境,【问题一】,苏科数学,已知:如图,EAC是ABC的外角,AD平分 EAC,ADBC 求证:ABAC,一、问题情境,【问题二】,苏科数学,变式训练,(1)上图中,如果ABAC,ADBC,那么AD平分EAC吗?试证明你的结论。 (2)上图中,如果ABAC,AD平分EAC,那么ADBC吗?,苏科数学,活动一,怎样把自己手中的一张直角三角形纸片用折纸的方法分成2个等腰三角形?,苏科数学,活动二,观察图形,你还有哪些发现?,。

16、,苏科数学,2.5 等腰三角形的轴对称性(2),南京市第二十九中学初中部 崔宁宁,等腰三角形的两个底角相等.,问题情境:,“等边对等角”,你能说出这个命题的逆命题吗?它是真命题还是假命题?,两内角相等的三角形是等腰三角形. ?,活动一:,1请同学们按以下方法进行操作: (1)画线段BC,使得BC=6cm; (2)在BC的同侧用量角器画两个相等的锐角CBM和BCN,设BM、CN交于点A (3)量一量AB、AC的长度,有何发现?,2请用语言叙述你的发现,已知:在ABC中,BC 求证:ABAC,判定定理: 有两个内角相等的三角形是等腰三角形. (简称“等角对等边”),活。

17、,苏科数学,2.5 等腰三角形的轴对称性(1),南京市第二十九中学初中部 崔宁宁,问题情境:,如图是什么图形?你对它有何认识?,1. 观察图中的等腰ABC,分别说出它们的腰、底边、顶角和底角.,活动一:,1.等腰三角形是轴对称图形吗?它的对称轴是什么?,活动一:,等腰三角形是轴对称图形. 等腰三角形的顶角平分线(底边上的高、中线)所在直线是它的对称轴.,活动一:,2在翻折的过程中你还有何发现?,重合的线段:BDCD; 重合的角:BC, ADBADC=90,等腰三角形的两个底角相等.,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.,活动二。

18、第1课时,13.3 等腰三角形 13.3.1 等腰三角形,1、了解等腰三角形的概念,掌握 等腰三角形的性质; 2、运用等腰三角形的概念 及性质 解决相关问题.,1、下列图形不一定是轴对称图形的是( ) A.圆 B.长方形 C.线段 D.三角形 2、怎样的三角形是轴对称图形? 3、有两边相等的三角形叫 ,相等的 两边叫 ,另一边叫 ,两腰的夹角叫 , 腰和底边的夹角叫 .,D,等腰三角形,等腰三角形,腰,底,顶角,底角,有两条边相等的三角形 叫做等腰三角形.,等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.,底边,。

19、第2课时,13.3.1 等腰三角形,1、探索等腰三角形的判定定理及其应用 2、探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念,BDCD,ADBC,如图,在ABC中,AB=AC, (1)若AD平分BAC,那么 (2)若BDCD,那么 (3)若ADBC,那么,AD平分BAC,ADBC,AD平分BAC,BDCD,如图,位于在海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得A=B.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?,O,B,A,能同时赶到,一个三角形有两个角相等,为什么这两个角所对的边也相等呢?,已知:ABC中,B=C,求证。

【13.3.1等腰三角形】相关PPT文档
【13.3.1等腰三角形】相关DOC文档
【13.3.1等腰三角形】相关其他文档
标签 > 13.3.1等腰三角形[编号:78231]