1.2 二次函数的图像3课件

2 22 2. .1 1 二次函数的二次函数的图像和性质图像和性质 22.1 22.1 二次函数二次函数的图像和性质的图像和性质 22.1.2 22.1.2 二次函数二次函数yax2 2的的 图像图像和性质和性质 人教版人教版 数学数学 九, 1 第三章 函 数第五节 二次函数的图像与性质基础过关1

1.2 二次函数的图像3课件Tag内容描述:

1、2 22 2. .1 1 二次函数的二次函数的图像和性质图像和性质 22.1 22.1 二次函数二次函数的图像和性质的图像和性质 22.1.2 22.1.2 二次函数二次函数yax2 2的的 图像图像和性质和性质 人教版人教版 数学数学 九。

2、 1 第三章 函 数第五节 二次函数的图像与性质基础过关1. (2018岳阳)抛物线 y3( x2) 25 的顶点坐标是( )A. (2,5) B. (2,5) C. (2,5) D. (2,5)2. (2018毕节)将抛物线 y x2向左平移 2个单位,再向下平移 5个单位,平移后所得新抛物线的表达式为( )A. y( x2) 25 B. y( x2) 25 C. y( x2) 25 D. y( x2) 253. (2018山西)用配方法将二次函数 y x28 x9 化为 y a(x h)2 k的形式为( )A. y( x4) 27 B. y( x4) 225 C. y( x4) 27 D.。

3、精锐教育1对3辅导讲义学员姓名: 学科教师:徐泽文年 级:初三 辅导科目:数学授课日期主 题第14讲-二次函数的概念和图像性质学习目标1、二次函数的解析式;2、二次函数的图像与性质;3、二次函数应用。教学内容知识结构二次函数概念二次函数图像二次函数图像变换图像性质利用图像解题二次函数解析式一般式,两点式,顶点式,交点式解析式的求法(待定系数法)二次函数应用考点1、二次函数图像2、二次函数图像的性质3、几种二次函数之间的图像变换规律4、解析式-通过二次函数过的点的坐标求解析式5、一般式,顶点式,配方法转换6、图像顶。

4、精锐教育1对3辅导讲义学员姓名: 学科教师:徐泽文年 级:初三 辅导科目:数学授课日期主 题第14讲-二次函数的概念和图像性质学习目标1、二次函数的解析式;2、二次函数的图像与性质;3、二次函数应用。教学内容知识结构二次函数概念二次函数图像二次函数图像变换图像性质利用图像解题二次函数解析式一般式,两点式,顶点式,交点式解析式的求法(待定系数法)二次函数应用考点1、二次函数图像2、二次函数图像的性质3、几种二次函数之间的图像变换规律4、解析式-通过二次函数过的点的坐标求解析式5、一般式,顶点式,配方法转换6、图像顶。

5、第3课时二次函数y=ax2+bx+c的图像和性质知识点 1将二次函数的一般式y=ax2+bx+c配方成顶点式1.将二次函数y=x2-2x+4化为y=a(x-h)2+k的形式,下列正确的是()A.y=(x-1)2+2 B.y=(x-1)2+3C.y=(x-2)2+2 D.y=(x-2)2+42.已知二次函数y=0.5x2-x-0.5,求其顶点坐标.小明的计算结果与其他同学的不同,请你帮他检查一下,在标出的几个步骤中开始出现错误的是第几步,请写出此题正确的求解过程.小明的计算过程:解:y=0.5x2-x-0.5=x2-2x-1=x2-2x+1-1-1=(x-1)2-2,顶点坐标是(1,-2).知识点2二次函数y=ax2+bx+c的图像和性质3.关于抛物线y=x2-2x+1,下列说法错误的是。

6、九年级(下册),作 者:熊诚燕(连云港市新海实验中学),初中数学,5.2 二次函数的图像和性质(4),函数yx22的图像与yx2的图像有什么关系?函数y (x3)2的图像和yx2的图像有什么关系?,yx22可以看成是yx2向上平移两个单位长度,y (x3)2可以看成是yx2向左平移三个单位长度,复习回顾,5.2 二次函数的图像和性质(4),(1)应用结论,(2)观察图像: 函数y (x3)2 2有哪些性质?,y x2,y (x3)2,向左移 3个单位,y (x3)2 2,向上移 2个单位,yx2,y (x3)2,y (x3)22,变式:二次函数y (x1)2 6的图像和yx2的图像的位置有什么关系?,探索发现,5.2 二次函数的图像和性。

7、5.2 二次函数的图像和性质(1),九年级(下册),作 者:张 玲 (连云港市新海实验中学),初中数学,画函数图像步骤:,研究函数性质方法:数形结合,二次函数的图像是怎样的?,连线,列表,描点,试着画一画吧!,想一想,5.2 二次函数的图像和性质(1),例1 画出函数yx2的图像,列表时自变量要 均匀和对称!,画一画,5.2 二次函数的图像和性质(1),观察函数yx2图像,说出图像特征,抛物线关于y轴对称,当x0时,y随x增大而增大,抛物线开口向上,当x0时,y随x增大而减小,图像有最低点,过(0,0) y有最小值,议一议,5.2 二次函数的图像和性质(1),例2 画出yx2图像。

8、5.2 二次函数的图像和性质(2),九年级(下册),作 者:徐 进(常州市北环中学),初中数学,请在同一坐标系中画出函数 和 、 和 的图像,画一画,5.2 二次函数的图像和性质(2),函数 和 、 和 的图像各有什么特征,并与同学交流,这两个函数的图像都是抛物线,抛物线的开口向上,对称轴为y轴,顶点在原点,顶点是抛物线的最低点,看一看,5.2 二次函数的图像和性质(2),这两个函数的图像都是抛物线,抛物线的开口向下,对称轴为y轴,顶点在原点,顶点是抛物线的最高点,说一说,函数 和 、 和 的图像各有什么特征,并与同学交流,5.2 二次函数的图像和性。

9、 例例4 4: : 一个球从地面上竖直向上弹起时的速度为一个球从地面上竖直向上弹起时的速度为10m/s,经,经 过过t(s)时球的高度为)时球的高度为h(m)。已知物体竖直上抛运动)。已知物体竖直上抛运动 中,中,h=v0t 0.5 gt (v0表示物体运动上弹开始时的速度,表示物体运动上弹开始时的速度, g表示重力系数,取表示重力系数,取g=10m/s )。问球从弹起至回到地)。问球从。

10、九年级(下册),作 者:徐 进(常州市北环中学),初中数学,5.2 二次函数的图像和性质(3),你还记得二次函数yx2的图像是怎样的吗?,开口向上的抛物线,对称轴是y轴,顶点在原点.,y轴左边图像下降, y轴右边图像上升.,复习回顾,5.2 二次函数的图像和性质(3),(1)列表,在同一坐标系中画出函数yx2和yx21的图像,从表格的数值看:对于同一个自变量 x 的取值,所对应的两个函数的函数值 y 有什么关系?,探索发现,5.2 二次函数的图像和性质(3),(2)描点、连线,从对应点的位置看:函数yx21的图像和yx2的图像的位置有什么关系?,(3)根据图像,函数y。

11、,苏科数学,5.2 二次函数的图像和性质,请在同一坐标系中画出函数 和 、 和 的图像,画一画,函数 和 、 和 的图像各有什么特征,并与同学交流,这两个函数的图像都是抛物线,抛物线的开口向上,对称轴为y轴,顶点在原点,顶点是抛物线的最低点,看一看,这两个函数的图像都是抛物线,抛物线的开口向下,对称轴为y轴,顶点在原点,顶点是抛物线的最高点,说一说,函数 和 、 和 的图像各有什么特征,并与同学交流,1二次函数yax的图像是一条抛物线,抛物线的顶点在原点,对称轴为y轴,2当a0时,抛物线的开口向上,顶点是抛物线的最低点,3当a0时,抛物。

12、,苏科数学,5.2 二次函数的图像和性质,画函数图像步骤:,研究函数性质方法:数形结合,二次函数的图像是怎样的?,连线,列表,描点,试着画一画吧!,想一想,例1 画出函数yx2的图像,列表时自变量要 均匀和对称!,画一画,观察函数yx2图像,说出图像特征,抛物线关于y轴对称,当x0时,y随x增大而增大,抛物线开口向上,当x0时,y随x增大而减小,图像有最低点,过(0,0) y有最小值,议一议,例2 画出yx2图像,画一画,观察函数yx2图像,说出图像的特征,抛物线关于y轴对称,当x0时,y随x增大而减小,抛物线开口向下,当x0时,y随x增大而增大,图像有最高点,过(0。

13、,苏科数学,5.2 二次函数的图像和性质,函数yx22的图像与yx2的图像有什么关系?函数y (x3)2的图像和yx2的图像有什么关系?,yx22可以看成是yx2向上平移两个单位长度,y (x3)2可以看成是yx2向左平移三个单位长度,复习回顾,(1)应用结论,(2)观察图像: 函数y (x3)2 2有哪些性质?,y x2,y (x3)2,向左移 3个单位,y (x3)2 2,向上移 2个单位,yx2,y (x3)2,y (x3)22,变式:二次函数y (x1)2 6的图像和yx2的图像的位置有什么关系?,探索发现,y x22x3, (x1)22,由活动一可知:函数y (x1)22的图像可以看成yx2平移得到,即y x22x3是函数yx2先向左平移一个。

14、第22章:二次函数,人教版九年级上册,22.1 二次函数的图像和性质,22.1.1 二次函数,学习目标,1.理解二次函数的概念,会根据给出的函数解析式判断其是否为二次函数。 2.通过探索具体问题中的数量关系和变化规律,体会二次函数是刻画现实世界中数量关系的一个有效的数学模型。 3.会列出实际问题中的二次函数关系,并能够确定其自变量的取值范围。,在某变化过程中的两个变量x、y,当变量x在某个范围内取一个确定的值,另一个变量y总有唯一的值与它对应。这样的两个变量之间的关系我们把它叫做函数关系。对于上述变量x 、y,我们把y叫x的函数。 。

15、,苏科数学,5.2 二次函数的图像和性质,你还记得二次函数yx2的图像是怎样的吗?,开口向上的抛物线,对称轴是y轴,顶点在原点.,y轴左边图像下降, y轴右边图像上升.,复习回顾,(1)列表,在同一坐标系中画出函数yx2和yx21的图像,从表格的数值看:对于同一个自变量 x 的取值,所对应的两个函数的函数值 y 有什么关系?,探索发现,(2)描点、连线,从对应点的位置看:函数yx21的图像和yx2的图像的位置有什么关系?,(3)根据图像,函数yx21的图像有哪些性质?,猜想:函数yx22的图像和y=x2的图像的位置有何关系?函数yx22的图像有哪些性质?,探索。

16、 知识回顾知识回顾: : 二次函数二次函数y=ax 的图象及其特点?的图象及其特点? 1、顶点坐标?、顶点坐标? (0,0) 2、对称轴?、对称轴? y轴(直线轴(直线x=0) 3、图象具有以下特点:、图象具有以下特点: 一般地,二次函数一般地,二次函数y=ax ( a0 )的图象是一条抛物线;的图象是一条抛物线; 当当a0 时,抛物线开口时,抛物线开口向上向上,顶点是抛物线上的,顶点。

17、 3102 2 xxy 请说出该抛物线的开口方向、顶点坐标、请说出该抛物线的开口方向、顶点坐标、 对称轴对称轴 y=ax +bx+c =a( (x2+ x)+c a b =ax2+ x+ +c a b 2 2 a b 2 2 a b = a(x+ )2 + a b 2 a bac 4 4 2 y=ax +bx+c a bac a b xay 4 4 ) 2 ( 2 。

18、1.2 二次函数的图像二次函数的图像(1) 回顾知识回顾知识: : 一、正比例函数一、正比例函数y=kx(k 0)其图象是什么。)其图象是什么。 二、一次函数二、一次函数y=kx+b(k 0)其图象又是什么。)其图象又是什么。 正比例函数正比例函数y=kx(k 0)其图象是一条经过)其图象是一条经过原点原点 的直线。的直线。 一次函数一次函数y=kx+b(k 0)其图象也是一条直线。)其。

19、 知识回顾知识回顾: : 二次函数二次函数y=ax 的图象及其特点?的图象及其特点? 1、顶点坐标?、顶点坐标? (0,0) 2、对称轴?、对称轴? y轴(直线轴(直线x=0) 3、图象具有以下特点:、图象具有以下特点: 一般地,二次函数一般地,二次函数y=ax ( a0 )的图象是一条抛物线;的图象是一条抛物线; 当当a0 时,抛物线开口时,抛物线开口向上向上,顶点是抛物线上的,顶点。

20、 课程标准浙教版实验教科书课程标准浙教版实验教科书 九年级九年级 上上 册册 知识回顾知识回顾: : 时,图象将发生怎样的变化?时,图象将发生怎样的变化? 二次函数二次函数y=ax y = a(x+m)2 y = a(x+m)2 +k 1、顶点坐标?、顶点坐标? (0,0) (m,0) ( m,k ) 2、对称轴?、对称轴? y轴(直线轴(直线x=0) (直线(直线x= 。

【1.2 二次函数的图像3课件】相关PPT文档
1.4二次函数的应用(3)课件
5.2二次函数的图像和性质(2)ppt课件
5.2二次函数的图像和性质(1)ppt课件
5.2二次函数的图像和性质(4)ppt课件
22.1《二次函数的图像和性质》课件
5.2二次函数的图像和性质(3)ppt课件
1.2二次函数的图像(2)ppt课件 (共18张PPT)
1.2二次函数的图像(3)ppt课件 (共14张PPT)
1.2 二次函数的图像(1)课件
1.2 二次函数的图像(2)课件
1.2 二次函数的图像(3)课件
【1.2 二次函数的图像3课件】相关DOC文档
标签 > 1.2 二次函数的图像3课件[编号:107659]