指数基本运算

3.10VB基本运算与顺序结构学习目标1.掌握三种基本算法的使用与优先级2.掌握顺序结构的概念与运行原理一、基本运算通过程序的执行对数据进行加工处理,基本运算是数据处理中最常用的手段。第10节VB基本运算与顺序结构学习目标知识条目考试要求考试属性考试形式变量与常量应用学考加试主观题、客观题常用数据类

指数基本运算Tag内容描述:

1、4 41.21.2 无理数指数幂及其运算性质无理数指数幂及其运算性质 学习目标 1.掌握用有理数指数幂的运算性质化简求值.2.了解无理数指数幂的意义 知识点一 无理数指数幂 一般地,无理数指数幂 a(a0, 为无理数)是一个确定的实数有理数指数幂的运算性质同 样适用于无理数指数幂 知识点二 实数指数幂的运算性质 1arasar s(a0,r,sR) 2(ar)sars(a0,r,sR) 3(a。

2、 1 第第 13 课时课时 整数指数幂及其运算整数指数幂及其运算 教学目标教学目标 理解整数指数幂的概念,掌握其运算法则. 知识精要知识精要 1零指数 )0( 1 0 aa 2负整数指数 )., 0( 1 为正整数pa a a p p 注意正整数幂的运算性质: nnn mnnm nmnm nmnm baab aa aaaa aaa )( ,)( ),0( , 可以推广到整数指数幂,也就是上述等式中的 m、 n 可以是 0 或负整数 3. 用科学记数法表示绝对值大于 0 而小于 1 的数的方法: 绝对值大于 0 而小于 1 的数可以表示为:10 n a (其中110,an为正整数) 热身练习热身练习 1. 当x 2时, 2 (42 )x 有意义? 2. 。

3、 1 第第 13 课时课时 整数指数幂及其运算整数指数幂及其运算 教学目标教学目标 理解整数指数幂的概念,掌握其运算法则. 知识精要知识精要 1零指数 )0( 1 0 aa 2负整数指数 )., 0( 1 为正整数pa a a p p 注意正整数幂的运算性质: nnn mnnm nmnm nmnm baab aa aaaa aaa )( ,)( ),0( , 可以推广到整数指数幂,也就是上述等式中的 m、 n 可以是 0 或负整数 3. 用科学记数法表示绝对值大于 0 而小于 1 的数的方法: 绝对值大于 0 而小于 1 的数可以表示为:10 n a (其中110,an为正整数) 热身练习热身练习 1. 当x_时, 2 (42 ) x 有意义? 2. 。

4、1对3辅导讲义学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间主 题第20讲 整数指数幂及其运算学习目标1理解整数指数幂的运算性质;会运用性质进行相关的计算;2会用科学记数法表示绝对值小于1的有理数;3熟练运用整数指数幂的运算性质进行相关的计算教学内容用同底数幂的除法法则计算用除法与分数的关系计算这两种计算结果应该是相等的,那么我们可以得到什么结论?如何用数学式子表示?一整数指数幂及其运算:负整数指数幂:(其中,p为正整数)整数指数幂:当时,就是整数指数幂,n可以是正整数、负整数和零。如:、(其中)练习。

5、1对3辅导讲义学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间主 题第20讲 整数指数幂及其运算学习目标1理解整数指数幂的运算性质;会运用性质进行相关的计算;2会用科学记数法表示绝对值小于1的有理数;3熟练运用整数指数幂的运算性质进行相关的计算教学内容(以提问的形式回顾)用同底数幂的除法法则计算用除法与分数的关系计算这两种计算结果应该是相等的,那么我们可以得到什么结论?如何用数学式子表示?、 (其中,p为正整数)【教学设计】在学生独立思考的基础上,组织学生进行相互之间的讨论,并请学生代表讲解计算的过程及。

6、3.1 指数与指数函数 3.1.1 实数指数幂及其运算,学习目标 1.理解有理指数幂的含义,会用幂的运算法则进行有关运算. 2.了解实数指数幂的意义.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 1.4的平方根为 ,8的立方根为 . 2.2322 ,(22)2 ,(23)2 , .,4,2,2,32,16,36,预习导引 1.基本概念,1,an,2.根式的性质,a,3.有理指数幂的运算法则 若a0,b0,则有任意有理数,有如下运算法则: (1)aa ; (2)(a) ; (3)(ab) .,ab,a,a,要点一 根式的运算 例1 求下列各式的值:,当3x1时,原式1x。

7、2 指数扩充及其运算性质,第三章 指数函数和对数函数,学习目标 1.理解分数指数幂的含义,学会根式与分数指数幂之间的相互转化. 2.了解无理数指数幂,理解实数指数幂的运算性质. 3.能用实数指数幂运算性质化简、求值.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 分数指数幂,思考 由a222(a0)易得 由此你有什么猜想?,答案 当a0,b0时,若ambn,则 (m,n为非零整数).,梳理 分数指数幂 (1)定义:给定 a,对于任意给定的整数m,n(m,n互素),存在,唯一的 b,使得 ,我们把b叫作a的 ,记作b .,正实数,正实数,bnam,次幂,(2)意义,0,知。

8、2指数扩充及其运算性质一、选择题1化简式子()2的结果是()A. B C. D考点有理数指数幂的运算性质题点有理数指数幂的乘除运算答案C解析()23.2下列根式、分数指数幂的互化中,正确的是()A(x)BxC. (x,y0)D.y考点根式与分数指数幂的互化题点根式与分数指数幂的互化答案C解析x,x,故选C.3.等于()Aa Ba Ca Da考点根式与分数指数幂的互化题点根式与分数指数幂的互化答案B解析aa.4(32x)中x的取值范围是()A(,) B.C. D.考点根式与分数指数幂的互化题点根式与分数指数幂的互化答案C解析(32x),要使该式有意义,需32x0,即x.52,3,6这三个数的大小关。

9、2指数扩充及其运算性质一、选择题1.等于()A.9 B.2 C. D.答案C2.下列各式中成立的是()A.7 B.C. D.答案D3.化简式子的结果是()A. B. C. D.考点根式与分数指数幂的互化题点根式化为分数指数幂答案C解析()23.4.化简的结果为()A. B. C. D.考点根式与分数指数幂的互化题点根式化为分数指数幂答案A解析显然a0.aaa.5.等于()考点根式与分数指数幂的互化题点根式化为分数指数幂答案B解析.6.设a0,将表示成分数指数幂,其结果是()答案C解析原式7.设m,则等于()A.m22 B.2m2 C.m22 D.m2考点有理数指数幂的运算性质题点附加条件的幂的求值答案C。

10、2指数扩充及其运算性质学习目标1.理解分数指数幂的含义,学会根式与分数指数幂之间的相互转化.2.了解无理数指数幂,理解实数指数幂的运算性质.3.能用实数指数幂运算性质化简、求值.知识点一分数指数幂(1)定义:给定正实数a,对于任意给定的整数m,n(m,n互素),存在唯一的正实数b,使得bnam,我们把b叫作a的次幂,记作b.(2)意义正分数指数幂负分数指数幂0的分数指数幂前提条件a0,m,n均为整数,m,n互素结论0,无意义知识点二无理数指数幂无理数指数幂a(a0,是无理数) 是一个确定的正实数.至此,指数幂a的指数取值范围扩充为R.知识点三实。

11、习题课集合的概念与运算基础过关1已知集合A1,2,3,4,B2,4,6,8,则AB中元素的个数为()A1 B2 C3 D4解析由题意可得AB2,4,共有2个元素答案B2符合条件aPa,b,c的集合P的个数是()A2 B3 C4 D5解析集合P内除了含有元素a外,还必须含b,c中至少一个,故Pa,b,a,c,a,b,c共3个答案B3已知集合A,B均为集合U1,3,5,7,9的子集,若AB1,3,(UA)B5,则集合B()A1,3 B3,5 C1,5 D1,3,5解析画出满足题意的Venn图,由图可知B1,3,5答案D4已知集合Ax|x2,Bx|xa,如果ABR,那么a的取值范围是_解析如图中数轴所示,要使ABR,需满足a2.答案a。

12、高一高二数学(必修4)百强校分项汇编同步题库专题04 平面向量的基本运算与平面向量基本定理一、选择题1【福建省福州市2017-2018学年高一下学期期末质量检测】如图,在的内部,为的中点,且,则的面积与的面积的比值为( )来源:A 3 B 4 C 5 D 6【答案】B【解析】D为AB的中点,O是CD的中点,SAOC=SAOD=SAOB=SABC,故选:B2【云南省宣威五中2017-2018学年高一下学期期末】在中,点在线段上,且若,则( )A B C D 【答案】B【解析】因为,所以 ,从而,故选B.3【江西省宜春市樟树中017-2018学年高一下学期第三次月考】如图,在66的方格纸中,。

13、高一高二数学(必修4)百强校分项汇编同步题库专题04 平面向量的基本运算与平面向量基本定理一、选择题1【福建省福州市2017-2018学年高一下学期期末质量检测】如图,在的内部,为的中点,且,则的面积与的面积的比值为( )来源:Zxxk.ComA 3 B 4 C 5 D 62【云南省宣威五中2017-2018学年高一下学期期末】在中,点在线段上,且若,则( )A B C D 来源:Z|xx|k.Com3【江西省宜春市樟树中017-2018学年高一下学期第三次月考】如图,在66的方格纸中,若起点和终点均在格点的向量,满足 ,则A B C D 4【河南省镇平县第一高级中017-2018学年高一下学。

14、 2.5 指数与指数函数指数与指数函数 最新考纲 考情考向分析 1.了解指数函数模型的实际背景 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌 握幂的运算 3.理解指数函数的概念及其单调性,掌握指数函数图象通 过的特殊点,会画底数为 2,3,10,1 2, 1 3的指数函数的图象 4.体会指数函数是一类重要的函数模型. 直接考查指数函数的图象与 性质; 以指数函数为载体, 考 查函数与方程、 不等式等交汇 问题, 题型一般为选择、 填空 题,中档难度. 1分数指数幂 (1)我们规定正数的正分数指数幂的意义是 m n anam(a0,m,nN*,且 n1)于是,。

15、第2课时习题课指数函数及其性质基础过关1设y140.9,y280.48,y3,则()Ay3y1y2 By2y1y3Cy1y2y3 Dy1y3y2解析40.921.8,80.4821.44,21.5,根据y2x在R上是增函数,21.821.521.44,即y1y3y2,故选D.答案D2若82a,a.故选A.答案A3函数yax在0,1上的最大值与最小值之和为3,则a()A0 B1 C2 D3解析由已知得a0a13,1a3,a2.答案C4函数y2x2ax在(,1)内单调递增,则a的取值范围是_解析由复合函。

16、3指数函数第1课时指数函数的图像与性质基础过关1指数函数yf(x)的图像经过点,那么f(4)f(2)()A8 B16 C32 D64解析设f(x)ax(a0且a1),由条件知f(2),故a2,a2,因此f(x)2x,f(4)f(2)242264.答案D2已知函数f(x)axb(a0,且a1)经过点(1,5),(0,4),则f(2)的值为()A7 B8 C12 D16解析由已知得解得f(x)3,f(2)3437.答案A3函数f(x)3x3(1x5)的值域是()A(0,) B(0,9)C. D.解析1x5,2x32,323x332,于是有f(x)9,即所求函数的值域为.答案C4指数函数y(2a)x在定义域内是减。

17、3.5 指数与指数函数最新考纲 考情考向分析1.了解指数幂的含义,掌握有理数指数幂的运算2.理解指数函数的概念,掌握指数函数的图象、性质及应用3.了解指数函数的变化特征.直接考查指数函数的图象与性质;以指数函数为载体,考查函数与方程、不等式等交汇问题,题型一般为选择、填空题,中档难度.1分数指数幂(1)我们规定正数的正分数指数幂的意义是 (a0,m,nN *,且 n1)于是,在条mnnam件 a0,m,n N*,且 n1 下,根式都可以写成分数指数幂的形式正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定 (a0,m,nN *,且 n1).0 的正n。

18、第 9 讲 指数与指数函数1(2017潍坊高三联考)设 a3 0.4,blog 30.4,c0.3 3,则 a,b,c 的大小关系为(A)Aa cb Ba bcCcab Dcb a因为 a3 0.41,blog 30.4cb.2. 函数 y|2 x1|在区间(k 1,k 1) 内不单调,则 k 的取值范围是(C)A(1,) B(,1) C(1,1) D(0,2)由于函数 y|2 x 1|在( ,0)内单调递减,在(0,) 内单调递增,而函数在区间( k1 ,k 1)内不单调,所以有 k10;f( )0 且 a1 时,函数 ya x2 4 的图象一定经过定点 (2,5) .因为 ya x经过定点(0,1),将 ya x向右平移 2 个单位,向上平移 4 个单位得到ya x2 4,所以 ya x2 4 的图象一定经过定。

19、第10节VB基本运算与顺序结构学习目标知识条目考试要求考试属性考试形式变量与常量应用学考加试主观题、客观题常用数据类型常用函数运算符与优先级顺序结构1变量与常量变量是在程序运行中其值可以改变的量。变量名由字母、数字、下划线组成,必须以字母开头,不能使用VB保留字,用Dim定义。常量是在程序执行过程中其值不变的存储单元,可分为直接常量和符号常量,符号常量用Const定义并赋值。2基本数据类型要求掌握的数据类型有六种,分别是整型、长整型、单精度实数、双精度实数、字符串型、逻辑型(有时叫布尔型)。3函数常用函数有11个,。

20、3.10 VB基本运算与顺序结构,学习目标,1.掌握三种基本算法的使用与优先级 2.掌握顺序结构的概念与运行原理,一、基本运算,通过程序的执行对数据进行加工处理,基本运算是数据处理中最常用的手段。,VB的基本运算包括:,(一)算术运算,(二)关系运算,(三)逻辑运算,(一) 算术类基本运算,乘幂() 取负(-) 乘法(*) 实数除法(/) 整数除法() 求余数(mod) 加法 (+) 减法(-),说明:,在同一个表达式中,如果有一个以上的 基本运算,则先执行优先级高的运算; 同优先级的基本运算,按自左向右顺序执行; 若表达式中有括号,则先计算括号内的表达。

【指数基本运算】相关PPT文档
【指数基本运算】相关DOC文档
标签 > 指数基本运算[编号:42994]