浙教版七年级数学下册 5.5分式方程ppt课件

条形统计图可以清楚地表示出每个项目的具体数目.,折线统计图可以清楚地反映事物变化的情况.,扇形统计图可以清楚地表示各部分在总体中所占的百分比.,复习回顾,你还记得各个统计图的特点:,李大爷,我买“俏俏”雪糕,“俏俏”没有了,来支“皮皮”吧,问题情境,我可不要,怎么搞的,有的雪糕不够卖,有的又卖不完,

浙教版七年级数学下册 5.5分式方程ppt课件Tag内容描述:

1、条形统计图可以清楚地表示出每个项目的具体数目.,折线统计图可以清楚地反映事物变化的情况.,扇形统计图可以清楚地表示各部分在总体中所占的百分比.,复习回顾,你还记得各个统计图的特点:,李大爷,我买“俏俏”雪糕,“俏俏”没有了,来支“皮皮”吧,问题情境,我可不要,怎么搞的,有的雪糕不够卖,有的又卖不完,李大爷开了个冷饮店,小明要买“俏俏”雪糕,而李大爷没有,李大爷推荐小明来支“皮皮”雪糕,小明又不要,让李大爷左右为难,怎么搞的,有的雪糕不够卖有的又卖不完,各种牌子的雪糕应进多少?,小丽统计了最近一星期李大爷平均每。

2、2.3 平移变换,明天的成功源自今天的积累,问题: 在滑梯过程中,小朋友身体各部分的运动方向相同吗?运动距离呢?,议一议: 在传送带上,如果货物箱上的A点向左移动50cm,其他部位会向什么方向移动?移动了多少距离呢?, 通过以上的观察,你认为我们应从哪几个方面来说明平移变换?,下面两个图形的变换各是什么变换? 请说明理由。,(2) “小小竹排水中游,巍巍青山两岸走”, 所蕴涵的图形变换是_变换?,(1)已知一条线段(如图),请作出它向上平移3个单位后的图形。,(2)已知一个长方形(如图),请作出它向右平移4个单位后的图形。,练习。

3、1.5 图形的平移,明天的成功源自今天的积累,问题: 在滑梯过程中,小朋友身体各部分的运动方向相同吗?运动距离呢?,动手实验,学生两人一组实验:一人把书本(或文具盒)以一定斜度固定,另一人把一块三角板放在斜板上,让其自然下滑,观察其滑动过程;然后换一直尺或其他可滑动的物品再试一次.,议一议,三角板在下滑过程中各顶点的运动方向、运动距离如何变化?三角板下滑动过程中,其形状、大小、方向如何变化?对应边有何特征? 概念:由一个图形改变为另一图形,在改 变的过程中,原图形上所有的点都沿同一方向运动,且运动相等的距离,。

4、5.2 分式的基本性质,第2课时,分式的基本性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式 ,分式的值不变.,知识回顾,分式的符号法则:,不改变分式的值,把下列各式的分子与分母的最高次项化为正数。,分式应用四,2、下列运算正确的是( ),错。没有同时乘 (x+2),错。分子,分母同时乘 了,但不是同一个分式,错。a可能为0,正确。同时除以 a,D,为什么x0?,约分与化简,例1 化简下列分式:() (),解:(),(根据什么?),( 2 ),像这样把一个分式的分子与分母的公因式约去,叫做分式的约分.,把分子和分母的公因式约去,动动手,化。

5、5.2 分式基本性质(1),1求使下列分式有意义的 x 的取值范围(1) 、 、2当 x 取何值时,下列分式的值为零。(1) (2),知识回顾,我们已经知道:= =,这是根据分数的基本性质:分数的分子与分母都乘以或除以同一个不等于零的数,分数的值不变,那么分式有没有类似的性质呢?,分数的基本性质 分数的分子与分母都乘以(或除以)同一个不等于零的 数 , 分数的值不变.,那么分式有没有类似的性质呢?,用式子表示是:,(其中M是不等于零的整式),例如:,不改变分式的值,把下列各式的分子与分母的各项系数都化为整数。,分式应用一,填空,2xy,5(x+y)2。

6、同分母的分式相加减,把分子相加减,分母不变.,【同分母分式加减法的法则】,(1) 计算:,(2)计算:,(3)计算:,2、你认为异分母的分式应该如何加减?,1、异分母的分数如何加减?,先通分,把异分母分数化为同分母的分数, 然后再按同分母分数的 加减法法则进行计算.,先通分,把异分母分式化为同分母的分式, 然后再按同分母分式的 加减法法则进行计算.,把分母不同的几个分式化为分母相同的分式,叫做通分.,异分母的分数相加减法则,异分母的分式相加减法则,5.4 分式的加减,第2课时,小明认为, 只要所异分母的分式化成同分母的分式, 异分母的分式。

7、你能找到它们的好朋友吗?, 2,游 戏 1:,想一想,同分母分数如何加减?,同分母分数相加减,分母不变,把分子相加减。,在一次扶贫帮困献爱心活动中,某校学生共捐得爱心款13363元,其中七(1)班同学捐了260元,七(2)班同学捐了220元,若这两个班的人数都是a人,则七(1)班同学平均每人比七(2)班多捐多少元?,这是关于分式的加减问题,应该如何计算?,算一算,5.4 分式的加减,第1课时,同分母 分数 相加减的法则:,同分母的分数相加减 ,把分子相加减,分母不变.,分式,分式,同分母的 相加减 ,把分子相加减,分母不变.,想一想:你还能找到它们的好朋友吗。

8、9.3 分式方程,第9章 分 式,导入新课,讲授新课,当堂练习,课堂小结,第2课时 分式方程的实际应用,1.理解数量关系正确列出分式方程.(难点) 2.在不同的实际问题中能审明题意设未知数,列分式方程解决实际问题.(重点),导入新课,问题引入,1.解分式方程的基本思路是什么?2.解分式方程有哪几个步骤?3.验根有哪几种方法?,分式方程,整式方程,转化 去分母,一化二解三检验,有两种方法:第一种是代入最简公分母;第二种代入原分式方程.通常使用第一种方法.,4.我们现在所学过的应用题有哪几种类型?每种类型的基本公式是什么?,基本上有4种:,(1。

9、5.4分式的加减(1),你能找到它们的好朋友吗?,2,游 戏 1:,想一想,同分母分数如何加减?,同分母分数相加减,分母不变,把分子相加减。,在一次扶贫帮困献爱心活动中,某校学生共捐得爱心款13363元,其中七(1)班同学捐了260元,七(2)班同学捐了220元,若这两个班的人数都是a人,则七(1)班同学平均每人比七(2)班多捐多少元?,这是关于分式的加减问题,应该如何计算?,算一算,同分母分数相加减的法则:,同分母的分数相加减 ,把分子相加减,分母不变.,分式,分式,想一想:你还能找到它们的好朋友吗?,游 戏 2:,猜测与探索,你认为 + 应该等于什么?,a,a,。

10、,5.4分式的加减(2),同分母的分式相加减,分母不变,分子相加减.,【同分母分式加减法的法则】,(1) 计算:,(2)计算:,2、你认为异分母的分式应该如何加减?,1、异分母的分数如何加减?,先通分,把异分母分数化为同分母的分数, 然后再按同分母分数的 加减法法则进行计算。,先通分,把异分母分式化为同分母的分式, 然后再按同分母分式的 加减法法则进行计算。,把异分母的分式可化为同分母的分式 的过程叫做 通分 .,异分母的分数相加减法则,同分母的分式相加减法则,小明认为, 只要所异分母的分式化成同分母的分式, 异分母的分式的问题就变成。

11、5.3分式的乘除,情景导入,火车提速后,平均速度提高到原来的x倍,那么行使同样的路程,时间可缩短到原来的几分之几?,火车提速后的时间,火车提速前的时间,那么行使同样的路程,时间可缩短到原来的,解:设火车提速前的速度为v,行使的路程为s,1. 观察下列运算,你想到了什么?,2.猜一猜下面的式子怎么运算,与同伴交流你的想法.,两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘.,例1. 计算:,你是否悟到了怎么去做此类分式的乘除法运算?,分子和分母都是单项式的。

12、5.1 分式(1),5月24日某校去上海世博会游。早上我们用 2 个小时参观了 3 个景点,那么平均参观每个景点用_小时,n,t,(2x-3),做一做,平均每小时参观_个景点,议一议,上面题中出现的代数式:,哪些是我们学过的整式?,思考: 它们有什么共同特征?它们与整式有什么不同?,分式的定义,这些代数式都表示两个整式相除,且除式中要含有字母像这样的代数式就叫做分式,下列代数式中,哪些是整式?哪些是分式?,辩一辩,分母中是否含有字母,整式,分式,你认为区分整式与分式的关键是什么?,辨一辨,下列代数式中,哪些是整式?哪些是分式?,整式有:,分式有:,。

13、,(小时),新昌与上海的距离约290公里,汽车平均每小时行70公里,问从新昌坐车到上海约需多少小时到达?,第一步:坐车到上海,29070=,共需(100a+160b )元,售票处 ,第二步:买世博园门票,每张票 元,1.世博会总共有154个展馆,分x个片区,你知道平均每个片区有多少个展馆吗?,2.在世博园里,大家买了些纪念品,总共花了m元,平均每人花了多少元?,第三步:参观,154x= 个,m(a+b)= 元,沙特国家馆,整式,?,代数式:,分分类,100a+160b,100a+160b,5.1分式,新知认识,观察:这些代数式有什么共同的特征?它们与整式有什么不同?,.两个整式相除. .除式中含有字。

14、5.5 分式方程第 1 课时 分式方程及其解法知识点 1 分式方程的定义只含分式,或分式和整式,并且分母里含有未知数的方程叫做分式方程1下列方程中,哪些是整式方程?哪些是分式方程?(1) 1.6;(2)2 2x;x 40.2 x 30.5 6 x2(3) 1 ;(4)x3 4 .8x2 1 x 8x 1 1x 1 1x 1知识点 2 解分式方程解分式方程的步骤:(1)分式方程两边同乘最简公分母,把分式方程转化为整式方程;(2)解这个整式方程,得出未知数的值;(3)检验所得到的值是不是原分式方程的根;(4)写出答案使分式方程的分母为零的根是增根,增根使分式方程无意义,应该舍去注意 检验是解分。

15、5.5 分式方程第 2 课时 分式方程的应用知识点 列分式方程解决实际问题的步骤列分式方程解决相关实际问题,其一般步骤如下:(1)审:审清题意,弄清题中的已知量、未知量及它们之间的等量关系;(2)设:设未知数;(3)列:找出题中已知量与未知量之间的等量关系,列出方程;(4)解:求出所列方程中未知数的值;(5)检:用分式方程解决实际问题时,必须进行检验;(6)答:写出答案2015十堰 在我市开展的“五城联创”活动中,某工程队承担了某小区 900 米长的污水管道改造任务工程队在改造完 360 米管道后,引进了新设备,每天的工作效率比原来提高。

16、5.5 分式方程(一)A 组1方程 1 的解是_x3_2x 12分式方程 的解是_x1_2x 13 x 323分式方程 1 的解是(D)2x 1 2xx 1A. x1 B. x3C. x D. 无解124定义新运算“”如下: a b ,则方程 x(2) 1 的解是(B)1a b2 2x 4A. x4 B. x5C. x6 D. x75如果解关于 x 的分式方程 1 时出现增根,那么 m 的值为(D)mx 2 2x2 xA. 2 B. 2 C. 4 D. 46解下列分式方程:(1) 0.3x 1 x 3x2 1【解】 方程两边同乘( x1)( x1),得3x3 x30,解得 x0.经检验, x0 是原方程的根,原方程的解为 x0.(2) .1x 1 2x 1 4x2 1【解】 方程两边同乘( x1)( x1),得x12( x1)4,解得 x1.经检验。

17、5.5 分式方程(二)A 组1某校美术社团为练习素描,他们第一次用 120 元买了若干本资料,第二次用 240 元在同一商家买同样的资料,这次商家每本优惠 4 元,结果比上次多买了 20 本,求第一次买了多少本资料?若设第一次买了 x 本资料,则可列方程为(D)A. 4 B. 4240x 20 120x 240x 20 120xC. 4 D. 4120x 240x 20 120x 240x 202若相邻两个正偶数的比是 2425,则这两个偶数之间的奇数为_49_3甲、乙两人做某种机械零件,已知甲每小时比乙多做 6 个,甲做 90 个所用的时间与乙做 60 个所用的时间相等,求甲、乙每小时各做多少个零件如果设乙每小时。

18、某地电话公司调低了长途电话的话费标准,每分钟费用降低了25%,因此按原收费标准6元话费的通话时间,在新收费标准下可多通话5分时间.问前后两种收费标准每分钟收费各是多少?,话费调 低了?,分析:若设原来的收费标准是x元/分,则可列出方程:,合作学习,思考:,该方程与我们学过的一元一次方程有什么不同?,1、2(x1)=x1; x2x-20=0; x+2y=1,2、,整式方程:,方程两边都是整式的方程.,分式方程:,方程中只含分式,或分式和整式,并且分母里含有未知数的方程.,观察下列方程:,概 念,一元一次方程,一元二次方程,第1课时,5.5 分式方程,找一找:1. 下列方程中。

19、5.5分式方程(2),分式, 分式方程的应用,抽奖游戏,分式方程的应用:,列分式方程解应用题利用解分式方程把已知公式变形,某市从今年1月1日起调整居民用水价格,每m3水费上涨三分之一,小丽家去年12月的水费是15元,今年2月的水费是30元.已知今年2月的用水量比去年12月的用水量多5m3,求我市今年居民用水的价格?,此题的等量关系有哪些?,在享受生活中感受数学,小丽家今年2月份的用水量小丽家去年12月份的用水量= 5m3. 每个月的用水量水的单价=每个月的用水费. 今年的用水单价=去年用水单价(1+1/3).,设该市去年用水的价格为x元/m3,x,(1+1/3)x,解:设。

20、5.5分式方程(2),分式方程复习,确定最简公分母,去分母,化为一元一次整式,两边同乘以 得:,把x=-3代入最简公分母检验:,(1-x)(1+x),(1-x)(1+x) =-8,解:,所以 X=-3,所以X=-3是原方程的根。,如果 m个人完成一项工作需要d天,则(m+n)个 人完成此项工作需要几天? 甲、乙两人每小时共能做35个零件。甲、乙两人同时开始工作,当甲做了90个零件时,乙做了120个。问甲、乙每小时各做多少个零件?,1,C,2,某市从今年1月1日起调整居民用水价格,每m3水费上涨三分之一,小丽家去年12月的水费是15元,今年2月的水费是30元.已知今年2月的用水量比去年12月的用。

【浙教版七年级数学下册 5.5】相关PPT文档
【浙教版七年级数学下册 5.5】相关DOC文档
标签 > 浙教版七年级数学下册 5.5分式方程ppt课件[编号:109014]