2.2 一元二次方程的解法(2)A 练就好基础 基础达标1方程 x23 的根是( C )13A3 B3 C3 D12一元二次方程(x6) 216 可转化为两个一元一次方程,其中一个是 x64,则另一个是( D )Ax64 Bx 64Cx 64 Dx 643用配方法解下列方程,其中应在左右两边同时加上
浙教版八年级数学下册第2章一元二次方程章末复习Tag内容描述:
1、2.2 一元二次方程的解法(2)A 练就好基础 基础达标1方程 x23 的根是( C )13A3 B3 C3 D12一元二次方程(x6) 216 可转化为两个一元一次方程,其中一个是 x64,则另一个是( D )Ax64 Bx 64Cx 64 Dx 643用配方法解下列方程,其中应在左右两边同时加上 4 的是( D )Ax 22x5 Bx 28x4Cx 2 2x5 D. x24x34用配方法解一元二次方程 x24x5 的过程中,配方正确的是( D )A(x 2)21 B(x2) 21C(x2) 29 D(x2) 295方程(x1) 22 的根是( C )A1 或 3 B1 或3C1 或 1 D. 1 或 12 2 2 26把方程 x24x 30 化为(xm) 2n 的形式,则 m,n 的值分别为( C )A2,1 B1,2C2,1 D2。
2、2.2 一元二次方程的解法(3),1、一元二次方程的一般形式:,常数项,二次项, 二次项系数,一次项, 一次项系数,复习回顾,(2)开平方法,(3)配方法,(1)因式分解法,2、一元二次方程的解法:,一般地,对于形如:其中 a,b 是非负数, 这样的一元二次方程,可用开平方法 直接得出它的两个解或者将它转化为两个一元一次方程进行求解.,开平方法解一元二次方程:,移项:把常数项移到方程的右边;,求解:解一元一次方程;,开方:根据平方根意义,方程两边开平方;,配方法解一元二次方程的基本步骤:,配方:方程两边都加上一次项系数一半的平方;,例6、用配方。
3、2.2 一元二次方程的解法(4),一除、二移、三配、四开、五解.,“配方法”解方程的基本步骤:,4、利用开平方法把原方程化成两个一元一次方程;,3、把方程的左边配成一个完全平方式;,2、把常数项移到方程的右边;,1、把二次项系数化为1(方程的两边同时除以二次项系数a),温故知新,5、解一元一次方程,求出方程的两个解。,温故知新,用配方法解下列一元二次方程,你能用配方法解一般形式的一元二次方程ax2+bx+c=0(a0)吗?,探索新知,用配方法解一般形式的一元二次方程,移项,得,配方,得,即,思考,此类方程一定有实数根么?,必须符合什么条件?,即,。
4、2.3 一元二次方程的应用(1),问题情境:,要做一个高是8cm,底面长比宽多5cm,体积528cm3的长方体木箱,问底面的长和宽是多少?,设宽为x,由题意得:,8x(x+5)=528,长方体的底面积高=长方体体积(528cm3),找相等关系:,解:设长方体的宽为x(cm),则长为 cm,列方程:,化简、整理后,得,解得 x1=-11,x2=6,检验:x1=-110不符合实际情况,舍去.当x2=6时,符合题意,x=6,长方体的长为6+5=11,答:长方体的宽为6cm,长为11cm.,(x+5),x(x+5) 8=528,x2+5x-66=0,回顾与总结:,列方程解应用题的基本步骤怎样?,(1)审题:找出题中的量,分清有哪些已知量、未。
5、第 2 章 一元二次方程2.1 一元二次方程A 练就好基础 基础达标1下列方程中,属于一元二次方程的是( C )A2x10 By 2x1Cx 2 10 D. x 211x2方程(m2)x 23mx 1 0 是关于 x 的一元二次方程,则( D )Am2 Bm2Cm2 Dm2 3把一元二次方程(x2)( x3) 4 化成一般形式,得( C )Ax 2x100 Bx 2x64Cx 2 x100 Dx 2x604将方程 3x216x 化为一元二次方程的一般形式,其中二次项系数为 3,则一次项系数、常数项分别是( A )A6,1 B6,1C6,1 D6,15下列关于一元二次方程 x23x1 的各项系数的说法不正确的是( C )A二次项系数为 1 B一次项系数为3C常数项为1 D一次项为3x6。
6、2.3 一元二次方程的应用(一),学校图书馆去年年底图书馆有藏书5万册,为了扩大同学们的阅读量,准备购买新图书 (1)若计划以年平均增长20%的速度购进新图书,你预计今年年底有 册,明年年底有图书 册。,(2)若明年年底要将图书增加到7.5万册.则这两年的年平均增长率为多少?(精确到0.01)学.科.网zxxk.组卷网,等量关系:经过两年平均增长后的数量=7.5万册,开启智慧,学校图书馆去年年底图书馆有藏书5万册,为了扩大同学们的阅读量,准备购买新图书 (2)若明年年底要将图书增加到7.5万册.则这两年的年平均增长率为多少?学.科.网zxxk,。
7、,2.1一元二次方程(2),(a0),复习回顾,1、一元二次方程的定义,2、一元二次方程的一般式:,3、一元二次方程的根的含义,复习回顾,因式分解: 把一个多项式化成几个整式的积的形式,主要方法:,(1)提取公因式法,(2)公式法:,a2b2=(a+b) (ab),a22ab+b2=(ab)2,在学习因式分解时,我们已经知道,可以利用因式分解求出某些一元二次方程的解,请利用因式分解解下列方程:,(1)y23y0; (2) 4x2=9,解:(1)y(y-3)=0, y=0或y-3=0, y1=0, y2=3,(2)移项,得 4x2-9=0,(2x+3)(2x-3)=0,x1=-1.5, x2=1.5,像上面这种利用因式分解解一元二次方程的方。
8、第第 2 章一元二次方程的应用期末复习专题提升训练(附答案)章一元二次方程的应用期末复习专题提升训练(附答案) 1某省加快新旧动能转换,促进企业创新发展某企业一月份的营业额是 1000 万元,月平均增长率相同, 第一季度的总营业额是 3990 万元若设月平均增长率是 x,那么可列出的方程是( ) A1000(1+x)23990 B1000+1000(1+x)+1000(1+x)23990 C100。
9、一元二次方程的应用(2),鲜花为你盛开,你一定行!,O,N,如图,红点从O出发,以3米/秒的速度向东前进, 经过t秒后,红点离O的距离ON= .,(1),3t,|40-3t|,N,N,鲜花为你盛开,你一定行!,O,N,M,北,东,如图,蓝、红两点同时从O点出发,红点以3米/秒的速度向东前进,蓝点以2米/秒的速度向北前进,经过t秒后,两点的距离MN 是 (代数式表示),(3),(4),BO=30米,CO=40米,蓝从B点,红从C点同时出发,其他条件不变,经过t秒后,两点的距离MN的距离是 (代数式表示),O,N,M,北,东,B,C,O,N,M,北,东,O,N,M,北,东,O,N,M,北,东,B,C,B,C,B,C,BO=30。
10、第第 2 章一元二次方程期末复习能力达标训练章一元二次方程期末复习能力达标训练 1(附答案)(附答案) 1某超市一月份的营业额为 25 万元,三月份时因新冠疫情下降到 16 万元,若平均每月下降率为 x,则由 题意列方程应为( ) A25(1+x)216 B25(1x)216 C16(1+x)225 D251+(1x)+(1x)216 2若 x1 是关于 x 的一元二次方程 ax2+bx+10(a。
11、浙教版八下第二章 一元二次方程单元测试卷一、选择题(共 10 小题,每小题 3 分,共 30 分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1、方程 x2=3x 的根是( )A、x = 3 B、x = 0 C、x 1 =3, x 2 =0 D、x 1 =3, x2 = 02、三角形的两边长分别为 3 和 6,第三边长是方程 x26x+8=0 的根,则 这个三角形的周长是( )A、 11 B、 13 C、11 或 13 D、11 和 13 来源:学_科_网 Z_X_X_K3、把方程 化成 的形式,则 m、n 的值是( )2830x2xmnA、4,13 B、4,19 C、4,13 D、4,194、若关于 x 的一元二次方程 的一个根是。
12、阶 段 性 测 试(四)考查范围:第 2 章 2.12.4 总分:100 分一、选择题(每小题 5 分,共 30 分)1设 , 是一元二次方程 x22x 10 的两个根,则 的值是( D )A2 B1C2 D12若 x2 是关于 x 的一元二次方程 x2 axa 20 的一个根,则 a 的值为( C )32A1 或 4 B1 或4C1 或4 D1 或 43某农机厂四月份生产零件 50 万个,第二季度共生产零件 182 万个设该厂五、六月份平均每月生产零件个数的增长率为 x,那么 x 满足的方程是( B )A50(1x) 2182B5050(1x) 50(1x )2182C50(12x)182D5050(1x )50(12x) 1824a,b,c 为常数,且 ac0,则关于 x 的方程 ax2bxc0 根。
13、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.3 一元二次方程的应用(1),因式分解法 开平方法 配方法 公式法,解一元二次方程的四种方法:,课前回顾,例1 某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.当每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?,情境导入,学了这么多方法,我们来试着将它们应用到生活中吧!,审题:理解题意。 设元(未知数)。 用含未知数的代数式表示相关的量。 。
14、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.2 一元二次方程的解法(3),配方法解二次项系数为1的一元二次方程的基本步骤:,(1)移项:把常数项移到方程的右边; (2)配方:方程两边同时加上一次项系数一半的平方; (3)开方:根据平方根的意义,方程两边开平方; (4)求解:解一元一次方程; (5)定解:写出原方程的解.,课前回顾,情境引入,你能用配方法解一元二次方程的一般式吗?,(1)移项;(2)配方;(3)开方;(4)求解;(5)定解.,步骤依旧如下:,移项,得,配方,得,即,探究1,解得,一元二次方程的求根公式,(a0, b2-4ac0),开。
15、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.2 一元二次方程的解法(1),一元二次方程有什么特点?,整式方程 未知数的个数是1 含有未知数的项的最高次数是2,含有一个未知数,并且所含未知数的项的次数都为2的方程。,什么是一元二次方程?,课前回顾,ax2+bx+c=0 (a,b,c为常数,a0),一元二次方程的一般形式:,a,b,c分别叫做二次项系数、一次项系数和常数项.,课前回顾,还记得下面这一问题吗?,我们列出的一元二次方程为,情境导入,把面积为4的一张纸分割成如图的正方形和长方形两部分,求正方形的边长。,设正方。
16、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.3 一元二次方程的应用(2),列方程解应用题的一般步骤:,即审题,找出题中的量,分清有哪些已知量、未知量,哪些是要求的未知量和所涉及的基本数量关系、相等关系。,设元,包括设直接未知数或间接未知数,以及用含未知数的代数式表示其他相关量。,根据等量关系列出方程。,解方程。,检验根的准确性及是否符合实际意义。,总结,课前回顾,(1)增长率问题,(2)降低率问题,课前回顾,例1 如图甲,有一张长40cm,宽25cm的长方形硬纸片,裁去角上四个小正方形之后,折成。
17、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.2 一元二次方程的解法(2),(1)提取公因式法 (2)公式法: a2b2=(a+b) (ab) a22ab+b2=(ab)2 (3)十字相乘法,因式分解的主要方法:,课前回顾,x2+(a+b)x+ab=(x+a)(x+b).,根据若AB=0,则A=0或B=0,将解一元二次方程转化为解两个一元一次方程。,将方程的左边分解因式;,若方程的右边不是0,先移项,使方程的右边为0;,因式分解法解方程的基本步骤:,课前回顾,情境引入,如图,师傅为了修房顶,把一架梯子搁在墙上,AB长5米,AC是BC的2倍,问:AC为多少?,梯子、墙壁、地面构。
18、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.1 一元二次方程,课前回顾,一元一次方程,未知量,未知量的最高次幂,一个未知量,未知量的最高次幂是1,提示,判断下列式子是否是一元一次方程:,情境引入,把面积为4的一张纸分割成如图的正方形和长方形两部分,求正方形的边长。,设未知数,设正方形的边长为x.,探究1,正方形的面积为_。,长方形的面积为_。,分析等量关系,探究1,相加,+,=,探究2,某放射性元素经过2天质量衰变为原来的 ,问:平均每天的衰减率为多少?,设未知数,设平均每天的衰减率为x。,探究2,一天衰减为_。
19、章末复习课考点 1 一元二次方程的有关概念1下列方程中,属于一元二次方程的是( C )Ax 2 0 Bax 2bx 01x2C(x1)(x2)1 D3x 22xy5y 202已知关于 x 的方程 x2m 2x20 的一个根是 1,则 m 的值是( C )A1 B2C1 D23若 n(n0) 是关于 x 的方程 x2mx 3n0 的根,则 mn_3_考点 2 一元二次方程的解法4把方程 x24x 60 配方成(xm) 2n 的形式,结果应是( D )A(x 4)22 B(x2) 26C(x2) 28 D(x2) 2105方程 x(x1)x 的根是( D )Ax2 Bx 2Cx 1 2,x 20 Dx 12,x 206用适当的方法解下列方程(1)(2x3) 2250;(2)4x23x10;(3)3(x2) 2x(x 2);(4)(x1)( x8)2.【答案】 (1)x1。