,ASA,AAS,SAS,2、如图,RtABC中, 直角边 、 ,斜边 。,BC,AC,AB,3、如图,ABBE于C,DEBE于E,请同学们加入适当的条件,使得两个三角形全等,如果两个直角三角形满足斜边和一条直角边对
全等三角形专题复习三角形不等关系Tag内容描述:
1、ASA,AAS,SAS,2、如图,RtABC中, 直角边 、 ,斜边 。
,BC,AC,AB,3、如图,ABBE于C,DEBE于E,请同学们加入适当的条件,使得两个三角形全等,如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?,-,-,=,=,学习目标: 1、掌握直角三角形全等的判定方法斜边直角边; 2、熟练运用“HL”定理证明直角三角形全等; 3、能够运用“HL”定理解决有关问题.,做一做,用尺规作图法,做一个RtABC,使C= 90斜边AB=10cm,一直角边CB=6cm. 剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?,想一想,怎样画呢?,按照下面的步骤做一做:, 作MCN=90;, 在射线CM上截取线段CB=6cm;, 以点B为圆心,以10cm为半径画弧,交射线CN于点A;, 连接AB.,合作探究:任意画一个RtACB ,使C。
2、F在AD上,且AFDC,BE, AD,你能证明ABDE吗?,建构活动,1. 为了利用“ASA”或“AAS”定理判定两个三角形全等,有时需要先把已知中的某个条件,转变为判定三角形全等的直接条件,数学概念,2证明两条线段相等或两个角相等可以通过证明它们所在的两个三角形全等而得到,数学活动,例1 已知:如图,点A、B、C、D在一条直线 上, EAFB,ECFD,EAFB 求证:ABCD,数学运用,1.已知:如图,ABAC,点D、E分别在AB、AC 上 ,BC 求证:DBEC ,数学运用,2.变式一: 已知:12,BC,ABAC 求证:ADAE ,DE,数学运用,3.变式二 已知:12,BC,ABAC, D、A、E 在一条直线上 求证:ADAE,DE,小结思考,拿出手中的2个三角形纸片,你能拼出本节课所讲问题的图形吗?,。
3、形,除了上述四种判定方法外,还有斜边和一条直角边分别相等的两个直角三角形全等,即简写为斜边直角边或 HL名师点睛典例分类考向一:全等三角形的判定与性质的综合运用典例 1:(2018 恩施)如图 7,点 B,F,C,E 在一条直线上,FBCE , AB ED,ACFD,AD 交 BE 于 O求证:AD 与 BE 互相平分考向二:平移、旋转、翻折中的全等变换典例 2:(2018荆门)如图,在 RtABC 中,ACB90,BAC30,E 为 AB 边的中点,以 BE 为边作等边BDE,连接 AD,CD(1)求证:ADECDB ;(2)若 BC ,在 AC 边上找一点 H,使得 BHEH 最小,并求出这个最小值3BDCEA典例 3:(2017莱芜)已知 ABC 与DEC 是两个大小不同的等腰直角三角形(1 )如图所示,连接 AE,DB,试判断线段 AE 和 DB 的数量和位置关系,并说明理由;(2 )如图所示,连接 DB,将线段 DB 绕 D 点顺时针旋转 90到 DF,连。
4、等腰、等边三角形、直角三角形等腰、等边三角形、直角三角形 (知识点总结(知识点总结+ +例题讲解)例题讲解) 一、等腰三角形及其性质:一、等腰三角形及其性质: 1.定义:两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰; 第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角。
2.2.等腰三角形的性质:等腰三角形的性质: (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等等腰。
5、形的一个外角 与它不相邻的两个内角的和. (4)三角形的一个外角 与它不相邻的任何一个内角.,大于第三边,小于第三边,互余,等于,大于,全等三角形,1.性质 (1)全等三角形的 、 分别相等; (2)全等三角形的对应线段(角平分线、高、中线、中位线) ,周长 ,面积 . 2.判定,对应边,对应角,相等,相等,相等,S.S.S.,A.A.S.,H.L.,三角形的三边关系,例1 (2019扬州)已知n是正整数,若一个三角形的三边长分别是n+2,n+8, 3n,则满足条件的n的值有( ) (A)4个 (B)5个 (C)6个 (D)7个,思路点拨:根据三角形的两边之和大于第三边,列出关于n的不等式组,求出n的取值范围,再求其正整数解即可.,D,(1)判断三条线段能否组成三角形,关键看这三条线段长度是否满足较小的两条线段长度之和大于最长的线段长度. (2)已知三角形两边长度求第三边长度范围的方法:根据三角形三边关系列出不等式组,然后解不等式组,确定取值范围.,与三角形有关的角,例2 小明把一副含45,30的。
6、课时训练课时训练( (十八十八) ) 全等三角形全等三角形 (限时:30 分钟) |夯实基础| 1.2018 巴中 下列各图中 a,b,c 为三角形的边长,则甲、乙、丙三个三角形和左侧ABC 全等的是 ( ) 图 K18-1 A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙 2.如图 K18-2,已知ABC=BAD,添加下列条件还不能判定ABCBAD 的是 ( ) 图 。
7、专题三专题三 三角函数与解三角形三角函数与解三角形 第二编 讲专题 第第2 2讲讲 三角恒等变换与解三角形三角恒等变换与解三角形 考情研析 三角恒等变换和利用正弦定理、余弦定理解三角形问题 是高考的必考内容.1.三角恒等变换主要考查:两角和与差的正弦、余弦、 正切公式;二倍角公式、半角公式的应用;辅助角公式的应用 2.解 三角形问题主要考查:边和角的计算;三角形形状的判断;面积的计 算;有关参数。
8、角形和左侧ABC 全等的是( )A. 甲和乙 B. 乙和丙 C. 甲和丙 D. 只有丙2. (2018 成都) 如图,已知ABC DCB,添加以下条件,不能判定 ABCDCB的是( )A. AD B. ACBDBC C. ACDB D. ABDC3. (2018 西安高新一中模拟)如图,已知 OAOB ,点 C 在 OA 上,点 D 在 OB 上,OCOD,AD 与 BC 相交于点 E,那么图中全等的三角形共有( )A. 2 对 B. 3 对 C. 4 对 D. 5 对第 3 题图 第 4 题图 第 5 题图 4. (2018 南京) 如图,AB CD,且 ABCD ,E 、 F 是 AD 上两点,CEAD,BFAD .若 CEa,BFb,EFc ,则 AD 的长为( )A. ac 。
9、高与垂线不同,高是线段,垂线是直线 (2)中线:在三角形中,连接一个顶点和它所对边的_的线段叫做三角形的中线;三角形的三条中线的交点叫做三角形的_ (3)角平分线:在三角形中,一个_角的平分线与它对边相交,这个角的顶点与交点之间的_叫做三角形的角平分线;三角形的三条角平分线的交点叫做三角形的_ (4)中位线:连接三角形两边_的线段叫做三角形的中位线;三角形的中位线_于第三边,且等于第三边的_,垂足,中点,重心,内,线段,内心,中点,平行,一半,垂心,4. 三角形的性质 (1)三角形的内角和为_ (2)三角形的外角和为_ (3)三角形的一个外角等于和它_的两个内角的和;三角形的一个_大于与它不相邻的任何一个_ (4)三角形的任意两边之和_第三边,任意两边之差_第三边,180,360,不相邻,外角,内角,大于,小于,二、全等三角形 1. 全等图形:能够完全_。
10、题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读。
11、2020年中考数学试题分类汇编之九 三角形 1、 选择题 3.(2020北京)如图,AB和CD相交于点O,则下列结论正确的是( ) A.1=2 B.2=3 C.14+5 D.25 【解析】由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项的23,C选项1=4+5,D选项的25.故选A. 4(2020广州)ABC中,点D,E分别是ABC的边AB,A。
12、13.3 全等三角形的判定全等三角形的判定 第第 4 课时课时 具有特殊位置关系的三角形的全等具有特殊位置关系的三角形的全等 学习目标:学习目标: 1.复习并回顾全等三角形的判定方法.重点 2.根据平移或旋转证明两个三角形全等并掌握其规律.。
13、三角形及全等三角形三角形及全等三角形 (知识点总结(知识点总结+ +例题讲解)例题讲解) 一、三角形的有关概念:一、三角形的有关概念: 1.1.三角形:三角形:由不在同一直线上的三条线段首尾 顺次相接 所组成的图形,叫做三角形。
【例题【例题 1 1】将一个三角形纸片剪开分成两个三角形,这两个三角形不可能( ) A.都是锐角三角形 B.都是直角三角形 C.都是钝角三角形 D.是一。
14、交BC于E,若BDE=,ADB的大小是( )A B C D 3如图,ABC中,C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则ACF的大小是( ).A45 B60 C30 D不确定 4如图,ABC中,BAC=90 ADBC,AE平分BAC,B=2C,DAE的度数是( ) .A. 45 B. 20 C. 30 D. 15 5(2014春安岳县校级期中)如图,六边形ABCDEF中,每一个内角都是120,AB=12,BC=30,CD=8,DE=28求这个六边形的周长为()A125 B126 C116 D108 6. 如图,ABBC,BEAC,12,ADAB,则( ).A1EFD B。
15、全重合的2个三角形是全等三角形,2 全等三角形的性质: 全等三角形的对应边,对应角相等.,用符号语言可以表述为: ABCDEF, AD,BE,CF, ABDE,BCEF,ACDF,例题讲解,1若ABCDEF, 写出这两个三角形的相等的边和相等的角,2如图, OMQOPN, 写出这两个三角形相等的边和相等的角 .,3如图,是一个等边三角形, 你能把它分成两个全等的三角形吗? 你能把它分成三个,四个全等的三角形吗?,小结思考,拿出手中的2个全等三角形纸片, 说说它们的相等的边与角,。
16、0. 3.三角形的内角和定理及推理 (1)三角形的内角和定理:三角形的内角和等于180. (2)推论:三角形的任何一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角;直角三角形的两锐角互余. 4.中位线的性质:三角形的中位线平行且等于第三边的一半. 5.三角形具有稳定性.,考点梳理,自主测试,考点三 三角形中的重要线段 1.三角形的角平分线 三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.特性:三角形的三条角平分线交于一点,这个点叫做三角形的内心. 2.三角形的高线 从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称高.特性:三角形的三条高所在的直线相交于一点,这个点叫做三角形的垂心. 3.三角形的中线 在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角形的三条中线交于一点,这个点叫三角形的重心. 4.三角形的中位线 连接三角形两边中点的线段叫做三角形的中位线.定理:三角形的中位线平行于第三边,且等于它的。
17、 D360 2. 在ABC 中,若A95,B40,则C 的度数为( ) A35 B40 C45 D50 3. 在ABC 中,AB3,BC4,AC2,D,E,F 分别为 AB,BC,AC 中点,连接 DF,FE,则四边形 DBEF的周长是( ) A5 B7 C9 D11 4. 在ABC 中,A50,B70,则C 的度数是( )A40。
18、的性质 (1)三角形的内角和是_,三角形的外角等于与它_的两个内角的和,三角形的外角大于任何一个和它不相邻的内角 (2)三角形的两边之和_第三边,两边之差_第三边 3. 三角形中的重要线段 (1)角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的_三角形的三条角平分线交于一点,这点叫做三角形的内心,它到三角形各边的距离相等 (2)中线:连接三角形的一个顶点和它对边_的线段三角形的三条中线交于一点,这点叫做三角形的重心 (3)高:从三角形的一个顶点向它的对边所在直线画_,顶点和垂足间的线段三角形的三条高交于一点,这点叫做三角形的垂心 (4)三边垂直平分线:三角形的三边垂直平分线交于一点,这点叫做三角形的外心,外心到三角形三个顶点距离相等,夯实基本 知已知彼,(5)中位线:连接三角形两边_的线段三角形的中位线平行于第三边,并且等于第三边的_ 温馨提示 三角形的边、角之间的关系是三角形中重要的性质,在比较角的大小、线段的。