第第 2 课时课时 导数与函数的极值导数与函数的极值、最值最值 题型一题型一 用导数求解函数极值问题用导数求解函数极值问题 命题点 1 根据函数图象判断极值 典例 设函数 f(x)在 R 上可导,其导函数为 f(x),且函数 y(1x)f(x)的图象如图所示, 则下列结论中一定成立的是( ) A函数
高考数学一轮复习学案9.5 椭圆 第2课时 直线与椭圆含答案Tag内容描述:
1、第第 2 课时课时 导数与函数的极值导数与函数的极值、最值最值 题型一题型一 用导数求解函数极值问题用导数求解函数极值问题 命题点 1 根据函数图象判断极值 典例 设函数 f(x)在 R 上可导,其导函数为 f(x),且函数 y(1x)f(x)的图象如图所示, 则下列结论中一定成立的是( ) A函数 f(x)有极大值 f(2)和极小值 f(1) B函数 f(x)有极大值 f(2)和极小值 f(1) C函数 f(x)有极大值 f(2)和极小值 f(2) D函数 f(x)有极大值 f(2)和极小值 f(2) 答案 D 解析 由题图可知,当 x0; 当20. 由此可以得到函数 f(x)在 x2 处取得极大值, 在 x2 处取得极小值。
2、第2课时直线与椭圆题型一直线与椭圆的位置关系1.若直线ykx1与椭圆1总有公共点,则m的取值范围是()A.m1 B.m0C.00且m5,m1且m5.2.已知直线l:y2xm,椭圆C:1.试问当m取何值时,直线l与椭圆C:(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.解将直线l的方程与椭圆C的方程联立,得方程组将代入,整理得9x28mx2m240. 方程根的判别式(8m)24×。
3、第 2 课时 直线与椭圆题型一 直线与椭圆的位置关系1.若直线 ykx1 与椭圆 1 总有公共点,则 m 的取值范围是( )x25 y2mA.m1 B.m0C.00 且 m5,m1 且 m5.2.已知直线 l:y 2xm,椭圆 C: 1.试问当 m 取何值时,直线 l 与椭圆 C:x24 y22(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.解 将直线 l 的方程与椭圆 C 的方程联立,得方程组Error!将代入,整理得 9x28mx2m 240.方程根的判别式 (8m )2 49(2m24)8m 2144.(1)当 0,即 3 3 时,方程 没有实数根,可知原方程组没有实数解.这时直2 2线 l 与椭圆 C 没有公共点.思维升华 研。
4、 9.5 椭椭 圆圆 最新考纲 考情考向分析 1.了解椭圆的实际背景,了解椭圆在刻画 现实世界和解决实际问题中的作用 2.掌握椭圆的定义、几何图形、标准方程 及简单几何性质. 椭圆的定义、标准方程、几何性质通常以小 题形式考查,直线与椭圆的位置关系主要出 现在解答题中题型主要以选择、填空题为 主,一般为中档题,椭圆方程的求解经常出 现在解答题的第一问. 1椭圆的概念 平面内与两个定点 F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆这两个定点 叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 集合 PM|MF1|MF2|2a,|F1F2|2c。
5、第第 2 课时课时 直线与椭圆直线与椭圆 题型一题型一 直线与椭圆的位置关系直线与椭圆的位置关系 1若直线 ykx1 与椭圆x 2 5 y2 m1 总有公共点,则 m 的取值范围是( ) Am1 Bm0 C00,即3 2b0)的右焦点为 F(3,0),过点 F 的直线交椭圆 E 于 A,B 两 点若 AB 的中点坐标为(1,1),则 E 的方程为( ) A.x 2 45 y2 361 B.x 2 36 y2 271 C.x 2 27 y2 181 D.x 2 18 y2 91 答案 D 解析 设 A(x1,y1),B(x2,y2), 所以 x21 a2 y21 b21, x22 a2 y22 b21 运用点差法, 所以直线 AB 的斜率为 kb 2 a2, 设直线方程为 yb 2 a2(x3), 联立直线与椭圆的方。