反比例函数专题

D. 2、关于反比例函数的图象,下列说法正确的是( ).A. 当时,随的增大而减小B. 两个分支关于轴成轴对称C. 两个分支分布在第二、四象限D. 图象经过点3、已知矩形的面积为,相邻的两条边长为和,则与之间的函数图象大致是( ).A. B. C. D. 4、如图,点在反比例函数的图象上,横坐标为,

反比例函数专题Tag内容描述:

1、D. 2、关于反比例函数的图象,下列说法正确的是( ).A. 当时,随的增大而减小B. 两个分支关于轴成轴对称C. 两个分支分布在第二、四象限D. 图象经过点3、已知矩形的面积为,相邻的两条边长为和,则与之间的函数图象大致是( ).A. B. C. D. 4、如图,点在反比例函数的图象上,横坐标为,过点分别向轴、轴作垂线,垂足分别为、,则矩形的面积为( ). A. B.  。

2、 第一章第一章 反比例函数反比例函数 1.3 1.3 反比例函数的应用反比例函数的应用 基础导练基础导练 1.某一数学课外兴趣小组的同学每人制作一个面积为 200cm 2的矩形学具进行展示设矩形的宽为 x cm,长 为 y cm,那么这些同学所制作的矩形的长 y(cm)与宽 x(cm)之间的函数关系的图象大致是( ) 2.下列各问题中两个变量之间的关系,不是反比例函数的是( ) A.小明。

3、6.2 反比例函数的图象与性质反比例函数的图象与性质 第第 1 课时课时 反比例函数的图象反比例函数的图象 1.会用描点法画出反比例函数的图象,并掌握反比例函数图象的特征; (重点) 2.会利用反比例函数图象解决相关问题.(难点) 一、情景导入 已知某面粉厂加工出 4000 吨面粉,厂方决定把这些面粉全部运往 B 市. 所需要的时间 t(天)和每天运出的面粉总重量 m(吨)之间有怎样的函数关。

4、3性质:(1)当k0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; (2)当k0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
5反比例函数解析式的确定由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
专题典型题考法及解析 【例题1】(2019山东枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A.B分别在x轴、y轴的正半轴上,ABC90,CAx轴,点C在函数y(x0)的图象上,若AB1,则k的值为()A1BCD2【答案】A 【解析】根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的值,本题得以解决等腰直角三角形ABC的顶点A.B分别在x轴、y轴的正半轴上,ABC90,CAx轴,AB1,BACB。

5、27.2 反比例函数的图像和性质反比例函数的图像和性质 第第 2 课时课时 反比例函数的性质反比例函数的性质 学习目标:学习目标: 1.根据反比例函数的图像归纳出反比例函数的性质. 2.能够结合反比例函数的图像和性质解决问题. 学习重点:学。

6、 27.2 反比例函数的图像和性质反比例函数的图像和性质 第第 1 课时课时 反比例函数的图像反比例函数的图像 学习目标:学习目标: 1.复习我们已经学习过的函数图像的画法. 2.掌握反比例函数图像的画法. 学习重点:学习重点:反比例函数图。

7、C y (x0) D y2 x3x32018衡阳 对于反比例函数 y ,下列说法不正确的是2x( )链 接 听 课 例 2归 纳 总 结A图像分布在第二、四象限B当 x0 时, y 随 x 的增大而增大C图像经过点(1,2)D若点 A(x1, y1), B(x2, y2)都在图像上,且 x1 x2,则 y1 y242018江都区模拟 已知函数 y( m2) xm210 是反比例函数,且图像在第二、四象限内,则 m 的值是( )A3 B3 C3 D1352017张家界 在同一平面直角坐标系中,函数 y mx m(m0)与 y (m0)的mx图像可能是 ( )链 接 听 课 例 3归 纳 总 结图 K34162017天津 若点 A(1, y1), B(1, y2), C(3, y3)都在反比例函数 y 的图像3x上,则 y1, y2, y3的大小关系是( )A。

8、反比例关系不一定是反比例函数,但 反比例函数y= (k为常数,k0)中的两个变量必成反比例关系.,例1 在下列函数表达式中,x为自变量,哪些是反比例函数?若是反比例 函数,请你指出相应的k值. y= ;y=- ;xy=15;y=x2-1;y=- ;y= +3;y=x-4.,分析 由反比例函数的概念可知,只要符合y= (k为常数,k0)或xy=k或 y=kx-1(k为常数,k0)的形式,均为反比例函数.,解析 是反比例函数,k值分别为- ,15,- . 点拨 判断一个函数是不是反比例函数,要从反比例函数的概念出发, 不能被表面现象迷惑.本题中不能化成y= (k为常数,k0)的形式,它 只能转化成y= ,此时分子不是常数,所以不是反比例函数.,知识点二 反比例函数表达式的确定由于反比例函数y= (k0)只有一个待定系数,因此只需要一组对 应值即可求出k的值,从而确定其表达式. 用待定系数法求反比例函数表达式的步骤: (1)设:设反比例函数的表达式为y= (k0); (2)代:把已知条件代入表达式,得到一个关于k的方程; (3)解:解这个方程。

9、案为:42. (   江苏无锡,15,2分)已知反比例函数y的图像经过点(1,2),则的值为          答案:2.   解析:把点(1,2)代入y,得2,k2.3. (   浙江温州,15,5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且AOD30,四边形OABD与四边形OABD关于直线OD对称(点A和A,B和B分别对应),若AB1,反比例函数y(k0)的图象恰好经过点A,B,则k的值为_答案:,解析:由点B在反比例函数上且AB1,可得OAk,          由对称性质可知OAOAk,AOA2AOD60 点A的坐标为(k,k), 它在反比例函数上,得:k×。

10、所以,它的图像与 x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质当 k0 时,函数图像的两个分支分别在第一、三象限。
在每个象限内,y 随 x 的增大而减小。
当 k0)、y 4x3x(x0 时,函数图像的两个分支分别在第一、三象限。
在每个象限内,y 随 x 的增大而减小。
当 k0)、y 3x (x0)、 y 3x (x0,b0 , ab 23, 332b,ODBAOC,tanOAB 2OBDAC,故答案:A二、填空题8 ( 2017宁波)已知 ABC 的三个顶点为 A ,B ,C ,将ABC 向右平移 m( )个单位后, ABC 某一边的中点恰好落在反比例函数 的图象上,则 m 的值为_. 【分析】依题可得 A(-1,-1) ,B(-1,3) ,C(-3,-3)向右平移 m 个单位得到的点分别为 A( -1+m,-1) ,B(-1+m ,3 ) ,C(-3+m ,-3) ;分AB 中点坐标(-1+m,1)在 y= 上.,AC 中点坐标( 。

11、 PA=BQ Q P B A Ox y Q P B A Ox y Q A B P Ox y 【例题讲解】【例题讲解】 例题例题 1、如图,直线 x=k(k0)与反比例函数 y= 2 x 和 y=- 1 x 一的图像分别交于 A、B两点,若点 P是 y轴 上任意一点,连接 PA、PB,则PAB 的面积是 . x=k y x B A O P 答案: 3 2 例题例题 2、如图,经过原点的两条直线 l1、l2,分别与双曲线 y= k x (k0)相交于 A、B、P、Q四点,其中 A、 P 两点在第一象限,设 A点坐标为(3,1). (1)求 k值及 B 点坐标; (2)若 P 点坐标为(a,3) ,求 a值及四边形 APBQ的面积. l2 l1 y xO Q P B A 答案:(1)把 A(3,1)代入 y= k x 得 k=3 1=3,经过原点的直线 l1与双曲线 y= k x (k0)相交于 A、B.点 A与 点 B 关于原点对称,B点坐标为(3,1); (2)把 P(a,3)代入 y= 3 x 得 3a=3,解得 a=1,P 点。

12、20元的人民币,可得几张?如果换成10元、5元的人民币呢? 设所换成的面值为x 元,相应的张数为y.,2,5,10,20,知 识 讲 解, 你会用含x的代数式表示y吗? 当所换的面值x越来越小时,相应的张数y怎样变化? 变量y是x的函数吗?为什么?,张数越来越多.,根据关系式可知,两者是反比例函数关系.,电流I、电压U、电阻R之间满足关系式 当U=220V时,(1)你能用含R的代数式表示I吗? (2)利用写出的关系式完成下表:,当R越来越大时,I怎样变化? 当R越来越小呢?,(3)变量I是R的函数吗?为什么?,U =IR,11,5.5,2.75,2.2,当R越来越小时,I越来越大;反之I越来越大.,由关系式可知,两者是反比例函数关系.,舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果就是通过改变电阻来控制电流的变化实现的.因为当电流I较小时,灯光较暗;反之,当电流I较大时,灯光较亮.,舞台的灯光效果,京沪高速公路全长约为1 318km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度。

13、 第一章第一章 反比例函数反比例函数 1.1 1.1 反比例函数反比例函数 基础导练基础导练 1.下列函数中,不是反比例函数的是( ) A. x y = 2 B. y = - k 3x (k0) C. y = 3 x -1 D. x = 5y -1 2. 函数 y= 2014 x 中,自变量 x 的取值范围是( ) A.x0 B.x0 C.x=0 D.x0 3.已知y与x成反比。

14、学员姓名:辅导科目:数学学科教师: 授课主题第15讲-反比例函数与反比例函数图像授课类型T同步课堂P实战演练S归纳总结教学目标理解反比例函数的概念,能判断两个变量之间的关系是否是反比例函数关系;能根据已知条件确定反比例函数的表达式及作出函数图像;掌握函数图像的性质与系数k的几何意义。
授课日期及时段T(Textbook-Based)同步课堂体系搭建 一、知识框架 二、知识概念 (一)反比例与反比例函数 1、反比例 如果两个变量的每一组对应值的乘积是一个非零常数,那么这两个变量成反比例,用数学符号语言记为xy=k,或 (k0)。
成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。
2、反比例函数 (1)定义 一般地,形如(为常数,)的函数称为反比例函数。
还可以写成。
也可以写成xyk, 它表明在反比例函数中自变量x与其对应函数值y之积,总等于已知常数k.。

15、学员姓名:辅导科目:数学学科教师: 授课主题第15讲-反比例函数与反比例函数图像授课类型T同步课堂P实战演练S归纳总结教学目标理解反比例函数的概念,能判断两个变量之间的关系是否是反比例函数关系;能根据已知条件确定反比例函数的表达式及作出函数图像;掌握函数图像的性质与系数k的几何意义。
授课日期及时段T(Textbook-Based)同步课堂体系搭建 一、知识框架 二、知识概念 (一)反比例与反比例函数 1、反比例 如果两个变量的每一组对应值的乘积是一个非零常数,那么这两个变量成反比例,用数学符号语言记为xy=k,或 (k0)。
成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。
2、反比例函数 (1)定义 一般地,形如(为常数,)的函数称为反比例函数。
还可以写成。
也可以写成xyk, 它表明在反比例函数中自变量x与其对应函数值y之积,总等于已知常数k.。

16、学员姓名:辅导科目:数学学科教师: 授课主题第15讲-反比例函数与反比例函数图像授课类型T同步课堂P实战演练S归纳总结教学目标理解反比例函数的概念,能判断两个变量之间的关系是否是反比例函数关系;能根据已知条件确定反比例函数的表达式及作出函数图像;掌握函数图像的性质与系数k的几何意义。
授课日期及时段T(Textbook-Based)同步课堂体系搭建 一、知识框架 二、知识概念 (一)反比例与反比例函数 1、反比例 如果两个变量的每一组对应值的乘积是一个非零常数,那么这两个变量成反比例,用数学符号语言记为xy=k,或 (k0)。
成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。
2、反比例函数 (1)定义 一般地,形如(为常数,)的函数称为反比例函数。
还可以写成。
也可以写成xyk, 它表明在反比例函数中自变量x与其对应函数值y之积,总等于已知常数k.。

17、年级九年级课题2611反比例函数的意义课型新授教学媒体多媒体教学目标1使学生理解并掌握反比例函数的概念,2能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式,3能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。

18、数的解析式,体会函数的模型思想.,(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草坪,草坪的长 y (单位:m) 随宽 x (单位:m)的变化而变化;,(3) 已知北京市的总面积为1.68104 km2 ,人均占有面积 S (单位:km2/人) 随全市总人口 n (单位:人) 的变化而变化.,【观察】这三个函数解析式有什么共同点?,一般地,形如 (k是常数,k0)的函数称为反比例函数,其中x是自变量,y是函数,都是 的形式,其中k是非零常数。
,传授新知,反比例函数:形如 (k为常数,且k0),因为 x 作为分母,不能等于零,因此自变量 x 的取值范围是所有非零实数.,2.在实际问题中自变量x的取值范围是什么?,要根据具体情况来确定.,例如,在前面得到的第二个解析式 ,x的取值范围是 x0,且当 x 取每一个确定的值时,y 都有唯一确定的值与其对应.,反比例函数的三种表达方式:(注意 k 0),3.形如 的式子是反比例函数吗?,式子 呢?,1.下列函数中哪些是反比例函数,并指出相应。

19、6.3 反比例函数的应用反比例函数的应用 1.会根据实际问题中变量之间的关系,建立反比例函数模型; (重点) 2.能利用反比例函数解决实际问题.(难点) 一、情景导入 我们都知道,气球内可以充满一定质量的气体. 如果在温度不变的情况下, 气球内气体的气压 p (kPa) 与气体体积 V (m3) 之间有怎样的关系? 你想知道气球在什么条件下会爆炸吗? 二、合作探究 探究点一:实际问题与反比例。

20、课时训练课时训练( (十二十二) ) 反比例函数反比例函数 (限时:30 分钟) |夯实基础| 1.2018 海南 已知反比例函数 y= 的图象经过点 P(-1,2),则这个函数的图象位于 ( ) A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限 2.2018 日照 已知反比例函数 y=-8 ,下列结论:图象必经过(-2,4);图象在二、四象限内;y。

【反比例函数专题】相关PPT文档
【反比例函数专题】相关DOC文档
26.1反比例函数(一)同步练习附答案解析
6.2反比例函数的图象与性质 教案
第26:反比例函数 经典中考题
中考数学培优(含解析)之反比例函数
1.1反比例函数 课时练习(含答案)
26.1.1反比例函数的意义 教案
6.3反比例函数的应用 教案
标签 > 反比例函数专题[编号:199397]