第23讲

1 第第 2323 讲讲 三角函数及解直角三角形三角函数及解直角三角形 一、考点知识梳理一、考点知识梳理 【考点【考点 1 1 锐角三角函数】锐角三角函数】 1.锐角三角函数的概念 在RtABC 中,C90,ABc,BCa, ACb,则A 的 正弦 sinAA的对边 斜边 a c 余弦 cosAA

第23讲Tag内容描述:

1、 1 第第 2323 讲讲 三角函数及解直角三角形三角函数及解直角三角形 一、考点知识梳理一、考点知识梳理 【考点【考点 1 1 锐角三角函数】锐角三角函数】 1.锐角三角函数的概念 在RtABC 中,C90,ABc,BCa, ACb,则A 的 正弦 sinAA的对边 斜边 a c 余弦 cosAA的邻边 斜边 b c 正切 tanAA的对边 A的邻边 a b 2.特殊角的三角函数值 三角函数。

2、 1 第第 23 讲讲 三角函数及解直角三角形三角函数及解直角三角形 一、考点知识梳理一、考点知识梳理 【考点【考点 1 锐角三角函数】锐角三角函数】 1.锐角三角函数的概念 在 RtABC 中,C90 ,ABc,BCa, ACb,则A 的 正弦 sinAA的对边 斜边 a c 余弦 cosAA的邻边 斜边 b c 正切 tanAA的对边 A的邻边 a b 2.特殊角的三角函数值 三角函数 3。

3、 1 第第 2323 讲讲 与圆有关的计算与圆有关的计算 1弧长与扇形面积的相关计算 (1)半径为 r 的圆的周长:C2r ;半径为 r,n的圆心角所对的弧长:lnr 180 ; (2)半径为 r 的圆的面积:Sr 2;半径为 r,圆心角为 n,弧长为 l 的扇形面积:S 扇形nr 2 360 1 2lr. 2圆锥的侧面积和全面积 (1)圆锥与其侧面展开图的关系:圆锥侧面展开图是扇形; 圆锥底面。

4、 1 第第 2323 讲讲 与圆有关的计算与圆有关的计算 1弧长与扇形面积的相关计算 (1)半径为 r 的圆的周长:C2r ;半径为 r,n的圆心角所对的弧长:l ; (2)半径为 r 的圆的面积:Sr 2;半径为 r,圆心角为 n,弧长为 l 的扇形面积:S 扇形 1 2lr. 2圆锥的侧面积和全面积 (1)圆锥与其侧面展开图的关系:圆锥侧面展开图是扇形; 圆锥底面周长其侧面展开所得扇形的。

5、 1 第 23 讲 圆的基本性质 【考点导引】 1.理解圆的有关概念和性质,了解圆心角、弧、弦之间的关系 2了解圆心角与圆周角及其所对弧的关系,掌握垂径定理及推论. 【难点突破】 1. 圆中通常把圆周角和圆心角以及它们所对弧的度数进行转换,怎么转换需要根据题目的要求来确定;同 圆的半径相等, 有时还需要连接半径, 用它来构造等腰三角形, 有了等腰三角形, 再利用“等边对等角”及“三 线合一”来进。

6、 1 第 23 讲 圆的基本性质 【考点导引】 1.理解圆的有关概念和性质,了解圆心角、弧、弦之间的关系 2了解圆心角与圆周角及其所对弧的关系,掌握垂径定理及推论. 【难点突破】 1. 圆中通常把圆周角和圆心角以及它们所对弧的度数进行转换,怎么转换需要根据题目的要求来确定;同 圆的半径相等, 有时还需要连接半径, 用它来构造等腰三角形, 有了等腰三角形, 再利用“等边对等角”及“三 线合一”来进。

7、 第 1 页 / 共 16 页 第第 23 讲:三角恒等变换(讲:三角恒等变换(1) 一、课程标准 1.经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用 2.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解 它们的内在联系 3.能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆). 二、基。

8、 第 1 页 / 共 8 页 第第 23 讲:三角恒等变换(讲:三角恒等变换(1) 一、课程标准 1.经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用 2.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解 它们的内在联系 3.能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆). 二、基础。

标签 > 第23讲[编号:29331]