1 第 15 讲 等腰三角形 【考点导引】 1.了解等腰三角形的有关概念,掌握其性质及判定 2了解等边三角形的有关概念,掌握其性质及判定 3掌握线段垂直平分线的性质及判定 4掌握角平分线的性质及判定. 【难点突破】 1. 在解有关等腰三角形边长问题时,通常要进行讨论,注意分类讨论后一定要运用三边关
第16讲 直角三角形教师版备战2020年中考考点讲练案Tag内容描述:
1、 1 第 15 讲 等腰三角形 【考点导引】 1.了解等腰三角形的有关概念,掌握其性质及判定 2了解等边三角形的有关概念,掌握其性质及判定 3掌握线段垂直平分线的性质及判定 4掌握角平分线的性质及判定. 【难点突破】 1. 在解有关等腰三角形边长问题时,通常要进行讨论,注意分类讨论后一定要运用三边关系检验,所求的 结果若能够组成三角形后,才能继续进行有关的计算. 2.当等腰三角形中只确定两个点,。
2、 1 第第 2323 讲讲 三角函数及解直角三角形三角函数及解直角三角形 一、考点知识梳理一、考点知识梳理 【考点【考点 1 1 锐角三角函数】锐角三角函数】 1.锐角三角函数的概念 在RtABC 中,C90,ABc,BCa, ACb,则A 的 正弦 sinAA的对边 斜边 a c 余弦 cosAA的邻边 斜边 b c 正切 tanAA的对边 A的邻边 a b 2.特殊角的三角函数值 三角函数。
3、 1 第 14 讲 三角形与全等三角形 【考点导引】 1.了解三角形和全等三角形有关的概念,知道三角形的稳定性,掌握三角形的三边关系 2理解三角形内角和定理及推论 3理解三角形的角平分线、中线、高的概念及画法和性质 4掌握三角形全等的性质与判定,熟练掌握三角形全等的证明. 【难点突破】 1. 在判断已知三条线段是否能够组成三角形,关键是灵活而巧妙运用三角形三边关系,能够组成三角形, 必须满足下列。
4、 1 第 15 讲 等腰三角形 【考点导引】 1.了解等腰三角形的有关概念,掌握其性质及判定 2了解等边三角形的有关概念,掌握其性质及判定 3掌握线段垂直平分线的性质及判定 4掌握角平分线的性质及判定. 【难点突破】 1. 在解有关等腰三角形边长问题时,通常要进行讨论,注意分类讨论后一定要运用三边关系检验,所求的 结果若能够组成三角形后,才能继续进行有关的计算. 2.当等腰三角形中只确定两个点,。
5、 1 第 14 讲 三角形与全等三角形 【考点导引】 1.了解三角形和全等三角形有关的概念,知道三角形的稳定性,掌握三角形的三边关系 2理解三角形内角和定理及推论 3理解三角形的角平分线、中线、高的概念及画法和性质 4掌握三角形全等的性质与判定,熟练掌握三角形全等的证明. 【难点突破】 1. 在判断已知三条线段是否能够组成三角形,关键是灵活而巧妙运用三角形三边关系,能够组成三角形, 必须满足下列。
6、 1 第 17 讲 锐角三角形与解直角三角形 【考点导引】 1.理解锐角三角函数的定义,掌握特殊锐角(30 ,45 ,60 )的三角函数值,并会进行计算 2掌握直角三角形边角之间的关系,会解直角三角形 3利用解直角三角形的知识解决简单的实际问题. 【难点突破】 1. 在直角三角形中,由于 sinA= 斜边 的对边A ;cosA= 斜边 的邻边A ; tanA= 的邻边 的对边 A A ,若已知。
7、 1 第 17 讲 锐角三角形与解直角三角形 【考点导引】 1.理解锐角三角函数的定义,掌握特殊锐角(30 ,45 ,60 )的三角函数值,并会进行计算 2掌握直角三角形边角之间的关系,会解直角三角形 3利用解直角三角形的知识解决简单的实际问题. 【难点突破】 1. 在直角三角形中,由于 sinA= 斜边 的对边A ;cosA= 斜边 的邻边A ; tanA= 的邻边 的对边 A A ,若已知。
8、 1 第 16 讲 直角三角形 【考点导引】 1.了解直角三角形的有关概念,掌握其性质与判定 2掌握勾股定理与逆定理,并能用来解决有关问题. 【难点突破】 1. 证明一个三角形是直角三角形的方法比较多, 最简捷的方法就是求出一个角等于 90 , 也可以利用三角形 一边上的中线等于这边的一半,或者利用勾股定理的逆定理证得 . 直角三角形除具有两锐角互余、两直角边的平方和等于斜边的平方、斜边的中线等。
9、 1 第 16 讲 直角三角形 【考点导引】 1.了解直角三角形的有关概念,掌握其性质与判定 2掌握勾股定理与逆定理,并能用来解决有关问题. 【难点突破】 1. 证明一个三角形是直角三角形的方法比较多, 最简捷的方法就是求出一个角等于 90 , 也可以利用三角形 一边上的中线等于这边的一半,或者利用勾股定理的逆定理证得 . 直角三角形除具有两锐角互余、两直角边的平方和等于斜边的平方、斜边的中线等。