,第二章 函数概念与基本初等函数,f(x1)f(x2),f(x1)f(x2),上升的,下降的,增函数,减函数,区间D,f(x)M,f(x0)M,f(x)M,f(x0)M,第二章 函数概念与基本初等函数,第2讲 函数的单调性与最值,2.2 函数的单调性与最值,第二章 函数概念与基本初等函数,ZUIXI
导数与函数的单调性二ppt课件Tag内容描述:
1、2.2 函数的单调性与最值,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义. 2.学会运用函数图象理解和研究函数的性质,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.函数的单调性 (1)单调函数的定义,f(x1)f(x2),f(x1)f(x2),知识梳理,ZHISHISHULI,(2)单调区间的定义 如果函数yf(x)在区间D上是 或 ,那么就说函数yf(x)在这一区间具有(严格的)单调性, 叫做yf(x)的单调区间.,上升的,下降的,增函。
2、2.4 压轴大题1 导数在函数中的应用,-2-,-3-,-4-,-5-,-6-,-7-,1.导数的几何意义 (1)函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0)处的切线的斜率,即k=f(x0). (2)函数切线问题的求解策略:用好切点“三重性”: 切点在函数图象上,满足函数解析式; 切点在切线上,满足切线方程; 切点处的导数等于切线的斜率. 2.函数的导数与单调性的关系 函数y=f(x)在(a,b)内可导, (1)若f(x)0在(a,b)内恒成立,则f(x)在(a,b)内单调递增; (2)若f(x)0在(a,b)内恒成立,则f(x)在(a,b)内单调递减. 3.函数的导数与单调性的等价关系 函数f(x)在(a,b)内可导,f(x)在(a,b)。
3、1.3.1 函数的单调性与导数,第一章 1.3 导数在研究函数中的应用,学习目标 1.理解导数与函数的单调性的关系. 2.掌握利用导数判断函数单调性的方法. 3.能利用导数求不超过三次多项式函数的单调区间.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 函数的单调性与导函数正负的关系,观察高台跳水运动员的高度h随时间t变化的函数h(t)4.9t26.5t10的图象及h(t)9.8t6.5的图象,思考运动员从起跳到最高点,从最高点到入水的运动状态有什么区别.,思考1,答案,答案 从起跳到最高点,h随t的增加而增加,h(t)是增函数,h(t)0; 从最高点到入水。
4、11导数与函数的单调性(二)一、选择题1若三次函数f(x)ax3x,x(,)是增函数,则()Aa0 Ba0Ca1 Da考点利用导数求函数的单调区间题点已知函数的单调性求参数(或其范围)答案A解析由题意可知f(x)0恒成立,即3ax210恒成立,显然B,C,D都不能使3ax210恒成立,故选A.2已知f(x)x3x,xm,n,且f(m)f(n)0,则方程f(x)0在区间m,n上()A至少有三个实数根B至少有两个实根C有且只有一个实数根D无实根考点函数的单调性与导数的关系题点利用导数值的正负号判定函数的单调性答案C解析f(x)3x210,f(x)在区间m,n上是减少的又f(m)f(n)0,方程f(x)0在区间m,n上。
5、11导数与函数的单调性(二)学习目标1.会利用导数证明一些简单的不等式问题.2.掌握利用导数研究含参数的单调性的基本方法知识点一导数与单调性的关系f(x)0能推出f(x)为增函数,但反之不一定因为函数f(x)x3在(,)上是增加的,但f(x)0,因此f(x)0是f(x)为增函数的充分不必要条件f(x)为增函数的充要条件:f(x)0(当且仅当有限个x或无限个离散的x使得等号成立)知识点二求参数的取值范围已知f(x)在区间D上是增加的,求f(x)中的参数值问题,这类问题往往转化为不等式的恒成立问题,即f(x)0在D上恒成立,求f(x)中的参数值知识点三利用导数证明不等式。
6、1.1 导数与函数的单调性(一),第三章 1 函数的单调性与极值,学习目标,1.理解导数与函数的单调性的关系. 2.掌握利用导数判断函数单调性的方法. 3.能利用导数求不超过三次多项式函数的单调区间.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 函数的单调性与导数,思考1 已知函数(1)y2x1,(2)y3x,(3)y2x,请判断它们的导数的正负与它们的单调性之间的关系.,答案 (1)y20,y2x1是增函数; (2)y30,y2x是增函数.,思考2 观察图中函数f(x),填写下表.,0,0,锐,钝,上升,下降,增加的,减少的,梳理 函数的单调性与导数符号的关系,f(x)0,f(x)0,1。
7、1.1 导数与函数的单调性(二),第三章 1 函数的单调性与极值,学习目标,1.会利用导数证明一些简单的不等式问题. 2.掌握利用导数研究含参数的单调性的基本方法.,问题导学,达标检测,题型探究,内容索引,问题导学,f(x)0能推出f(x)为 ,但反之不一定.因为函数f(x)x3在(,)上是增加的,但f(x)0,因此f(x)0是f(x)为增函数的充分不必要条件.f(x)为增函数的充要条件:f(x)0(当且仅当有限个x或无限个离散的x使得等号成立).,增函数,知识点一 导数与单调性的关系,已知f(x)在区间D上是增加的,求f(x)中的参数值问题,这类问题往往转化为不等式的恒成立问题。