初三上数学讲义直升班

第第 1010 讲讲 二次函数和方程不等式综合二次函数和方程不等式综合 模块模块一:一:二次函数和方程综合二次函数和方程综合 1函数 11 ya xb和二次函数 2 22 ya xb xc的交点 (1)交点求解,联立方程组 11 2 22 ya xb ya xb xc ,并代入求解 (2)交点个数,

初三上数学讲义直升班Tag内容描述:

1、第第 1010 讲讲 二次函数和方程不等式综合二次函数和方程不等式综合 模块模块一:一:二次函数和方程综合二次函数和方程综合 1函数 11 ya xb和二次函数 2 22 ya xb xc的交点 (1)交点求解,联立方程组 11 2 22 ya xb ya xb xc ,并代入求解 (2)交点个数,联立方程组 11 2 22 ya xb ya xb xc ,消元得到一元二次方程,看判。

2、第第 8 8 讲讲 二次函数的区间最值及应用二次函数的区间最值及应用 模块模块一:二次函数的一:二次函数的区间最值区间最值 1定轴定区间 对于二次函数 2 (0)yaxbxc a在mxn 上的最值问题(其中a、b、c、m和n均为定值, max y 表示 y的最大值, min y 表示y的最小值) (1)若自变量x为全体实数,如图,函数在 2 b x a 时,取到最小值,无最大值 (2)若 2 b 。

3、第第 6 6 讲讲 二次函数的图像性质和解析式二次函数的图像性质和解析式 模块模块一:二次函数的定义一:二次函数的定义 1定义:一般地,形如 2 yaxbxc(a,b,c是常数,0a )的函数,叫做二次函数其中x是自变 量,a,b,c分别是二次函数的二次项系数、一次项系数和常数项 注意:注意:二次函数的二次项系数0a ,而b、c可以为零 模块模块二:二次函数的图象和性质二:二次函数的图象和性质 1。

4、第第 4 4 讲讲 一元二次方程的特殊根问题一元二次方程的特殊根问题 模块一模块一 一元二次方程的公共根一元二次方程的公共根 1 1一元二次方程公共根问题的一般解法:一元二次方程公共根问题的一般解法: (1)如果公共根可以根据其中一个方程求出,则先求出公共根,代入另外一个方程,得到某一个参数的一 个方程,解得参数 (2)如果公共根不能直接求出,则先设出公共根,然后代入原方程,通过恒等变形求出参数的。

5、第第 5 5 讲讲 一元二次方程的构造及应用一元二次方程的构造及应用 模块一模块一 利用根的定义构造方程利用根的定义构造方程 如果m、n分别是一元二次方程()axbxca 的两根,那么有ambmc ,anbnc ,相 反的,如果已知m、n分别满足ambmc ,anbnc ,且a ,那就可以构造一个一元二次方程 ()axbxca 使得m、n是它的解 模块二模块二 利用根系关系构造方程利用根系关系。

6、3 -9 -6 Ox y B A 第第 9 9 讲讲 二次函数的线段最值和面积最值二次函数的线段最值和面积最值 模块一:二次函数的线段最值模块一:二次函数的线段最值 1定点在同侧,需要对称转化为异侧; 2动线段端点不重合,需要平移转化到同一点 模块二:二次函数的面积最值模块二:二次函数的面积最值 1铅垂法: 1 2 S 水平宽 铅垂高 分三步走:分三步走: (1)过动点作铅垂线,交另外两。

7、第第 7 7 讲讲 二次函数的图象二次函数的图象判断判断和几何变换和几何变换 模块模块一:一:二次函数的图象判断二次函数的图象判断 1二次函数图象与系数的关系 (1)a决定抛物线的开口方向 当0a 时,抛物线开口向上;当0a 时,抛物线开口向下反之亦然 (2)b和a共同决定抛物线对称轴的位置:“左同右异” 当0b 时,抛物线的对称轴为y轴;当a、b同号时,对称轴在y轴的左侧;当a、b异号时,对称轴。

8、 第第 1010 讲讲 二次函数和方程、不等式综合二次函数和方程、不等式综合 模块模块一:一:二次函数和方程综合二次函数和方程综合 1函数 11 ya xb和二次函数 2 22 ya xb xc的交点 (1)交点求解,联立方程组 11 2 22 ya xb ya xb xc ,并代入求解 (2)交点个数,联立方程组 11 2 22 ya xb ya xb xc ,消元得到一元二次方程。

9、第第 8 8 讲讲 二次函数的区间最值及应用二次函数的区间最值及应用 模块模块一:二次函数的一:二次函数的区间最值区间最值 1定轴定区间 对于二次函数 2 (0)yaxbxc a在mxn 上的最值问题(其中a、b、c、m和n均为定值, max y表示 y的最大值, min y 表示y的最小值) (1)若自变量x为全体实数,如图,函数在 2 b x a 时,取到最小值,无最大值 (2)若 2 b n。

10、第第 6 6 讲讲 二次函数的图象、性质和解析式二次函数的图象、性质和解析式 模块模块一:二次函数的定义一:二次函数的定义 1定义:一般地,形如 2 yaxbxc(a,b,c是常数,0a )的函数,叫做二次函数其中x是自变 量,a,b,c分别是二次函数的二次项系数、一次项系数和常数项 注意:注意:二次函数的二次项系数0a ,而b、c可以为零 模块模块二:二次函数的图象和性质二:二次函数的图象和性质。

11、第第 1818 讲讲 几何变换之旋转(一)几何变换之旋转(一) 一、旋转初步:一、旋转初步: 旋转在生活中很常见,在数学中,旋转变换也是几何三大变换中最常考的一种,也是在近几年中考和 直升外地生考试中频繁出现的热点考点。 1旋转的三要素:旋转角度,旋转中心和旋转方向。 2旋转的性质:旋转前后对应的图形全等,对应的旋转角度相等。 3中心对称:特别的,如果旋转角度为180,那么旋转前后两个图形成中心。

12、 1 第第 1515 讲讲 四点共圆四点共圆(一一) 模块一:辅助圆思想模块一:辅助圆思想 平面几何中有很多题目的背景中并没有出现圆,但是如果能够适当添加辅助圆,能让题目解起来变得十分 简单,因此,辅助圆思想是学习四点共圆的基础 几何条件:OAOBOC 辅助圆:以O为圆心、OA为半径作圆O OAOBOC,点B、C在O上 几何条件:OCOD,2CODCAD 辅助圆:以O为圆心、OC为半径作圆。

13、 1 第第 1616 讲讲 四点共圆(二)四点共圆(二) 模块一:四点共圆的判定(二)模块一:四点共圆的判定(二) 两条线段被一点分成(内分或外分)两段长的乘积相等,则这两条线段的四个端点共圆 四边形ABCD的对角线AC、BD交于H, 若AH CHBH DH,则ABCD、 、 、四点共圆. 四边形ABCD的对边BA、CD的延长线交于P, 若PA PBPD PC,则ABCD、 、 、四点共圆. 。

14、 1 第第 1111 讲讲 圆圆( (一一) ) 模块一模块一 圆的基本概念圆的基本概念 定 义 示例剖析 圆:圆:在一个平面内,线段OA绕它固定的一个端点O旋转 一周,另一个端点A所形成的图形叫做圆 固定的端点O叫做圆心,线段OA叫做半径 由圆的定义可知:由圆的定义可知: (1)圆上的各点到圆心的距离都等于半径长;在一个平 面内,到圆心的距离等于半径长的点都在同一个圆上因此, 圆是在一个平面内,。

15、第第 1717 讲讲 托勒密定理托勒密定理 (托勒密定理)四边形ABCD内接于圆,求证:AC BDAD BCAB CD 【解析】【解析】如图,在BD上取一点P,使其满足12 34 ,ACDBCP, ACAD BCBP , 即AC BPAD BC 又ACBDCP ,56 , ACBDCP, ABAC DPCD ,AC DPAB CD +,有AC BPAC PDAD BCAB CD 。

16、第第 1414 讲讲 圆(圆(四)四) 模块一模块一 圆和圆的位置关系圆和圆的位置关系 圆和圆的位置关系:圆和圆的位置关系:圆和圆外离、圆和圆外切、圆和圆相交、圆和圆内切、圆和圆内含五种,这五种关系 由两圆圆心的距离与两圆半径之和或差的大小关系决定 设 1 O、 2 O的半径分别为r、R(其中Rr) ,两圆圆心距为d,则有: dRr两圆外离;dRr两圆外切;RrdRr两圆相交; dRr两圆内切;0。

17、 1 第第 1212 讲讲 圆(二)圆(二) 模块一模块一 弧、弦、圆心角弧、弦、圆心角、圆周角、弦心距、圆周角、弦心距之间的关系之间的关系 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等 推论:推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量分别相等 总结:总结:在同圆或等圆中,弧、弦、圆心角、圆周角和弦。

18、 1 第第 1313 讲讲 圆(三)圆(三) 模块一模块一 切线的性质和判定切线的性质和判定 1 1切线的性质:切线的性质: 定理:圆的切线垂直于过切点的半径. 如图,直线AB与O相切于点P,连接OP,则OPAB. 推论 1:经过圆心且垂直于切线的直线必经过切点 推论 2:经过切点且垂直于切线的直线必经过圆心 总结:根据圆的切线性质定理,以后在题中看到圆的切线,连半径,得垂直. 2 2切线的判定:。

19、第第 1212 讲讲圆(二)圆(二) 模块一模块一 弧、弦、圆心角弧、弦、圆心角、圆周角、弦心距、圆周角、弦心距之间的关系之间的关系 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等 推论:推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量分别相等 总结:总结:在同圆或等圆中,弧、弦、圆心角、圆周角和弦心距的关。

20、第第 1111 讲讲 圆(一)圆(一) 模块一模块一 圆的基本概念圆的基本概念 定 义 示例剖析 圆:圆:在一个平面内,线段OA绕它固定的一个端点O旋转一周, 另一个端点A所形成的图形叫做圆 固定的端点O叫做圆心,线段OA叫做半径 由圆的定义可知:由圆的定义可知: (1)圆上的各点到圆心的距离都等于半径长;在一个平面内, 到圆心的距离等于半径长的点都在同一个圆上因此,圆是在一个平 面内,所有到一个。

【初三上数学讲义直升班】相关DOC文档
标签 > 初三上数学讲义直升班[编号:167189]