ampamp1671 数系的扩充与复数的引入一ppt课件

,第十二章 复数、算法、推理与证明,第十二章 复数、算法、推理与证明,第十二章 复数、算法、推理与证明,第十二章 复数、算法、推理与证明,a,b,ac且bd,ac且bd,|z|,|abi|,(ac)(bd)i,(ac)(bd)i,(acbd)(adbc)i,z2z1,z1(z2z3), 1数系的扩充

ampamp1671 数系的扩充与复数的引入一ppt课件Tag内容描述:

1、,第十二章 复数、算法、推理与证明,第十二章 复数、算法、推理与证明,第十二章 复数、算法、推理与证明,第十二章 复数、算法、推理与证明,a,b,ac且bd,ac且bd,|z|,|abi|,(ac)(bd)i,(ac)(bd)i,(acbd)(adbc)i,z2z1,z1(z2z3),。

2、1数系的扩充与复数的引入(一)一、选择题1设a,bR,“a0”是“复数abi是纯虚数”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件考点复数的概念题点复数的概念及分类答案B解析因为a,bR,当a0时,复数abi不一定是纯虚数,也可能b0,即abi0R.而当复数abi是纯虚数,则a0一定成立所以a,bR,a0是复数abi是纯虚数的必要不充分条件2以2i的虚部为实部,以i2i2的实部为虚部的新复数是()A22i BiC2i D.i考点复数的概念题点求复数的实部和虚部答案A解析设所求新复数zabi(a,bR),由题意知复数2i的虚部为2,复数i2i2i2(1)2i的实部。

3、1数系的扩充与复数的引入(一)学习目标1.了解引进虚数单位i的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法,理解复数相等的充要条件知识点一复数的概念及复数的表示思考为解决方程x22在有理数范围内无根的问题,数系从有理数扩充到实数;那么怎样解决方程x210在实数系中无根的问题呢?答案设想引入新数i,使i是方程x210的根,即ii1,方程x210有解,同时得到一些新数梳理复数及其表示(1)复数的定义规定i21,其中i叫作虚数单位;若aR,bR,则形如abi的数叫作复数(2。

4、第五章 数系的扩充与复数的引入,1 数系的扩充与复数的引入(二),学习目标,1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴、虚轴、模等概念. 3.掌握用向量的模来表示复数的模的方法.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 复平面,思考 实数可用数轴上的点来表示,类比一下,复数怎样来表示呢?,答案 任何一个复数zabi,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集之间可以一一对应.,梳理 当用直角坐标平面内的点来表示复数时,我们称这个直。

5、第五章 数系的扩充与复数的引入,1 数系的扩充与复数的引入(一),学习目标,1.了解引进虚数单位i的必要性,了解数集的扩充过程. 2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念. 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 复数的概念及复数的表示,思考 为解决方程x22在有理数范围内无根的问题,数系从有理数扩充到实数;那么怎样解决方程x210在实数系中无根的问题呢?,答案 设想引入新数i,使i是方程x210的根,即ii1,方程x210有解,同时得到一些新数.,。

【ampamp1671 数系的扩充与复】相关PPT文档
【ampamp1671 数系的扩充与复】相关DOC文档
标签 > ampamp1671 数系的扩充与复数的引入一ppt课件[编号:120961]