1、1数系的扩充与复数的引入(一)学习目标1.了解引进虚数单位i的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法,理解复数相等的充要条件知识点一复数的概念及复数的表示思考为解决方程x22在有理数范围内无根的问题,数系从有理数扩充到实数;那么怎样解决方程x210在实数系中无根的问题呢?答案设想引入新数i,使i是方程x210的根,即ii1,方程x210有解,同时得到一些新数梳理复数及其表示(1)复数的定义规定i21,其中i叫作虚数单位;若aR,bR,则形如abi的数叫作复数(2)复数的表示复数通常表示为zabi(a,bR);对于
2、复数zabi,a与b分别叫作复数z的实部与虚部,并且分别用Re z与Im z表示,即aRe z,bIm z.知识点二复数的分类(1)复数abi(a,bR)(2)集合表示知识点三两个复数相等的充要条件在复数集Cabi|a,bR中任取两个数abi,cdi (a,b,c,dR),我们规定:abi与cdi相等的充要条件是ac且bd.1若a,b为实数,则zabi为虚数()2复数zbi是纯虚数()3若两个复数的实部的差和虚部的差都等于0,那么这两个复数相等()类型一复数的概念例1(1)给出下列命题:若zC,则z20;2i1虚部是2i;2i的实部是0;若实数a与ai对应,则实数集与纯虚数集一一对应;实数集的补集是虚数集其中真命题的个数为()A0 B1 C2 D3(2)已知复数za2(2b)i的实部和虚部分别是2和3,则实数a,b的值分别是_考点复数的概念题点复数的概念及分类答案(1)C(2),5解析(1)令ziC,则i212a3,即a22a30,解得a3或a3或a1,则实数x的值是_考点复数的分类题点由复数的分类求未知数答案2解析由题意知得x2.1对于复数zabi(a,bR),可以限制a,b的值得到复数z的不同情况2两个复数相等,要先确定两个复数的实、虚部,再利用两个复数相等的充要条件进行判断.