6.4.1平面几何中的向量方法 同步练习含答案

2.5 平面向量应用举例平面向量应用举例 25.1 平面几何中的向量方法平面几何中的向量方法 一、选择题 1已知 A,B,C,D 四点的坐标分别为(1,0),(4,3),(2,4),(0,2),则此四边形为( ) A梯形 B菱形 C矩形 D正方形 考点 平面几何中的向量方法 题点 判断多边形的形状

6.4.1平面几何中的向量方法 同步练习含答案Tag内容描述:

1、 2.5 平面向量应用举例平面向量应用举例 25.1 平面几何中的向量方法平面几何中的向量方法 一、选择题 1已知 A,B,C,D 四点的坐标分别为(1,0),(4,3),(2,4),(0,2),则此四边形为( ) A梯形 B菱形 C矩形 D正方形 考点 平面几何中的向量方法 题点 判断多边形的形状 答案 A 解析 AB (3,3),CD (2,2), AB 3 2CD ,AB 与CD 共线 又。

2、 2.5 平面向量应用举例平面向量应用举例 25.1 平面几何中的向量方法平面几何中的向量方法 学习目标 1.学习用向量方法解决某些简单的平面几何问题及其他一些实际问题的过程. 2.体会向量是一种处理几何问题的有力工具.3.培养运算能力、分析和解决实际问题的能力 知识点一 几何性质及几何与向量的关系 设 a(x1,y1),b(x2,y2),a,b 的夹角为 . 用向量解决常见平面几何问题的技巧 。

3、6.46.4 平面向量的应用平面向量的应用 6 6. .4.14.1 平面几何中的向量方法平面几何中的向量方法 6 6. .4.24.2 向量在物理中的应用举例向量在物理中的应用举例 1 已知力 F 的大小F10, 在 F 的作用下产生的位。

4、6 6. .4 4 平面向量的应用平面向量的应用 6 6. .4.14.1 平面几何中的向量方法平面几何中的向量方法 6 6. .4.24.2 向量在物理中向量在物理中的应用举例的应用举例 基础达标 一选择题 1.在ABC 中, 设AC2A。

5、6.4.1 平面几何中的向量方法平面几何中的向量方法 A 级 基础巩固 1.在ABC 中,设 c, a, b,若 c cab0,则ABC 是 A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定其形状 2.在四边形 ABCD 中, 。

标签 > 6.4.1平面几何中的向量方法 同步练习含答案[编号:100969]