第 25 课时 平面向量的数量积的坐标表示、模、夹角课时目标1.掌握向量数量积的坐标表示,会进行向量数量积的坐标运算2会用坐标运算求向量的模,并会用坐标运算判断两个向量是否垂直3能运用数量积的坐标求出两个向量夹角的余弦值识记强化1若 a(x 1,y 1),b( x2,y 2),则 abx 1x2y
6.3.5平面向量数量积的坐标表示 课后作业含答案Tag内容描述:
1、第 25 课时 平面向量的数量积的坐标表示、模、夹角课时目标1.掌握向量数量积的坐标表示,会进行向量数量积的坐标运算2会用坐标运算求向量的模,并会用坐标运算判断两个向量是否垂直3能运用数量积的坐标求出两个向量夹角的余弦值识记强化1若 a(x 1,y 1),b( x2,y 2),则 abx 1x2y 1y2.2若有向线段 ,A (x1,y 1),B(x 2,y 2),则 | ;若AB |AB x2 x12 y2 y12 (x,y) ,则| | .AB AB x2 y23若 a(x 1,y 1),b( x2,y 2),则 ab x1x2y 1y20.4两向量 a(x 1,y 1),b(x 2,y 2),则求两向量的夹角 的公式为cos .x1x2 y1y2x21 y21 x2 y2课时。
2、6.3.4 平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示 基础达标 一选择题 1.已知向量 a3,5,bcos ,sin ,且 ab,则 tan 等于 A.35 B.53 C.35 D.53 解析 由 ab,得 5cos 3sin 。
3、6.3.5 平面向量数量积的坐标表示平面向量数量积的坐标表示 学习目标 1.掌握平面向量数量积的坐标表示.2.能够用两个向量的坐标来解决与向量的模、 夹角、垂直有关的问题. 知识点 平面向量数量积的坐标表示 设非零向量 a(x1,y1),b(x2,y2),a 与 b 的夹角为 . 则 a bx1x2y1y2. (1)若 a(x,y),则|a|2x2y2或|a| x2y2. 若表示向量 a 的有向线段的起点和终点的坐标分别为(x1,y1),(x2,y2),则 a(x2x1,y2 y1),|a| x2x12y2y12. (2)abx1x2y1y20. (3)cos a b |a|b| x1x2y1y2 x21y21 x22y22. 思考 若两个非零向量的夹角满足 cos 0,但夹角 0 。
4、6 6. .3.23.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 6 6. .3.33.3 平面向量加减运算的坐标表示平面向量加减运算的坐标表示 基础达标 一选择题 1.如果用 i,j 分别表示 x 轴和 y 轴方向上的单。
5、6 6. .3.53.5 平面向量数量积的坐标表示平面向量数量积的坐标表示 1多选设向量 a2,0,b1,1,则下列结论中正确的是 Aab2 Ba b0 Cab Dabb 答案 AD 解析 ab22,故 A 正确,B,C 显然错误, ab1。
6、6.3.5 平面向量数量积的坐标表示平面向量数量积的坐标表示 A 组 基础巩固练 一选择题 1已知平面向量 a1,m,b2,5,cm,0,且acab,则 m A3 10 B3 10 C3 10 D3 10 2a4,3,b5,6,则 3a24。
7、6.3.5 平面向量数量积的坐标表示平面向量数量积的坐标表示 基础达标 一选择题 1.已知 a3,1,b1,2,则 a 与 b 的夹角为 A.6 B.4 C.3 D.2 解析 设 a,b 的夹角为 ,a 10,b 5,a b5. cos a。