2.4.2 平面向量数量积的坐标表示模夹角 课时练习含答案

第 25 课时 平面向量的数量积的坐标表示、模、夹角课时目标1.掌握向量数量积的坐标表示,会进行向量数量积的坐标运算2会用坐标运算求向量的模,并会用坐标运算判断两个向量是否垂直3能运用数量积的坐标求出两个向量夹角的余弦值识记强化1若 a(x 1,y 1),b( x2,y 2),则 abx 1x2y

2.4.2 平面向量数量积的坐标表示模夹角 课时练习含答案Tag内容描述:

1、第 25 课时 平面向量的数量积的坐标表示、模、夹角课时目标1.掌握向量数量积的坐标表示,会进行向量数量积的坐标运算2会用坐标运算求向量的模,并会用坐标运算判断两个向量是否垂直3能运用数量积的坐标求出两个向量夹角的余弦值识记强化1若 a(x 1,y 1),b( x2,y 2),则 abx 1x2y 1y2.2若有向线段 ,A (x1,y 1),B(x 2,y 2),则 | ;若AB |AB x2 x12 y2 y12 (x,y) ,则| | .AB AB x2 y23若 a(x 1,y 1),b( x2,y 2),则 ab x1x2y 1y20.4两向量 a(x 1,y 1),b(x 2,y 2),则求两向量的夹角 的公式为cos .x1x2 y1y2x21 y21 x2 y2课时。

2、A 级 基础巩固一、选择题1已知向量 b 与向量 a(1, 2)的夹角是 180,且|b|3 ,则 b( )5A(3,6) B(3,6) C(6,3) D(6,3)解析:由题意,设 ba (,2)(0),由于|b| 3 ,所以|b| 3 ,5 2 ( 2)2 52 5所以 3,所以 b(3,6) 答案:A2若两个非零向量 a, b 满足|ab| |ab|2| a|,则向量 ab 与 ab 的夹角是( )A. B. C. D.6 56 3 23解析:因为|a b|ab|,所以 a22abb 2a 22ab b2,所以 ab0.又|a b |2|a|,所以|a| 22ab |b|24| a|2,所以|b| 23|a| 2.设 ab 与 ab 的夹角为 ,则 cos .又(a b)(a b)|a b|a b| |a|2 |b|。

3、24.2 平面向量数量积的坐标表示平面向量数量积的坐标表示、模模、夹角夹角 一、选择题 1已知 a(3,1),b(1,2),则 a 与 b 的夹角为( ) A. 6 B. 4 C. 3 D. 2 考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 答案 B 解析 |a| 10,|b| 5,a b5. cosa,b a b |a|b| 5 10 5 2 2 . 又a,b 的夹。

4、24.2 平面向量数量积的坐标表示平面向量数量积的坐标表示、模模、夹角夹角 学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量 数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据 向量的坐标求向量的夹角及判定两个向量垂直 知识点一 平面向量数量积的坐标表示 设非零向量 a(x1,y1),b(x2,y2),a 与 b 的夹角。

5、2.4.2 平面向量数量积的坐标表示、模、夹角平面向量数量积的坐标表示、模、夹角 基础过关 1设向量 a(2,0),b(1,1),则下列结论中正确的是( ) A|a|b| Ba b0 Cab D(ab)b 解析 ab(1,1),所以(ab) b110,所以(ab)b 答案 D 2平面向量 a 与 b 的夹角为 60 ,a(2,0),|b|1,则|a2b|等于( ) A 3 B2 3 C4 D12。

标签 > 2.4.2 平面向量数量积的坐标表示模夹角 课时练习含答案[编号:111396]