3.2二倍角的三角函数第2课时二倍角的三角函数的应用

,第四章 三角函数、解三角形,三角函数的周期性与奇偶性(师生共研),三角函数的对称轴或对称中心(师生共研),三角函数的图象与性质的综合问题(师生共研),第第 2 2 课时课时 三角函数的应用三角函数的应用 二二 课时对点练课时对点练 1.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人

3.2二倍角的三角函数第2课时二倍角的三角函数的应用Tag内容描述:

1、第第 2 2 课时课时 三角函数的应用三角函数的应用 二二 课时对点练课时对点练 1.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征如图是一个半径为 R 的水车,一个水斗从点 M 2, 2出发,沿圆。

2、3 二倍角的三角函数(一),第三章 三角恒等变形,学习目标 1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式. 2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 二倍角公式,思考1,二倍角的正弦、余弦、正切公式就是用的三角函数表示2的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式,你能推导出二倍角的正弦、余弦、正切公式吗?,答案,答案 sin 2sin()sin cos cos sin 2sin cos ; cos 2cos()cos cos sin sin cos2sin2。

3、3 二倍角的三角函数(二),第三章 三角恒等变形,学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法. 3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 半角公式,我们知道倍角公式中,“倍角是相对的”,那么对余弦的二倍角公式,若用2替换,结果怎样?,答案,思考1,思考2,答案,思考3,利用tan 和倍角公式又能得到tan 与sin ,cos 有怎样的关系?,。

4、3二倍角的三角函数(二) 基础过关1下列各式与tan 相等的是()A. B.C. D.解析tan .答案D2已知180360,则cos 的值为()A B. C D. 答案C3使函数f(x)sin(2x)cos(2x)为奇函数的的一个值是()A. B. C. D.解析f(x)sin(2x)cos(2x)2sin.当时,f(x)2sin(2x)2sin 2x.答案D4已知sincos,且(,3),则tan_.解析由条件知(,),tan0.由sincos,1sin .sin ,cos ,tan2.答案25函数f(x)sin(2x)2sin2x的最小正周期是_解析f(x)sin 2xcos 2x(1cos 2x)sin。

5、第2课时 二倍角的三角函数的应用,第3章 3.2 二倍角的三角函数,学习目标 1.进一步熟练掌握二倍角公式的特征及正用、逆用. 2.掌握二倍角公式的变形即降幂公式的特征. 3.会用二倍角公式进行三角函数的一些简单的恒等变换.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 降幂公式,思考,答案,降幂公式,梳理,题型探究,类型一 化简求值,解答,解答,反思与感悟,三角函数的化简与求值 (1)对于三角函数式的化简有下面的要求 能求出值的应求出值. 使三角函数种数尽量少. 使三角函数式中的项数尽量少. 尽量使分母不含有三角函数. 尽量使被开方。

6、 3 二倍角的三角函数二倍角的三角函数(一一) 基础过关 1函数 f(x)sin xcos x 的最小值是( ) A1 B1 2 C.1 2 D1 解析 f(x)1 2sin 2x 1 2, 1 2 . 答案 B 2已知 x( 2,0),cos x 4 5,则 tan 2x 等于( ) A. 7 24 B 7 24 C.24 7 D24 7 解析 cos x4 5,x( 2,0),得 s。

7、3.2二倍角的三角函数第1课时二倍角的三角函数一、选择题1已知是第三象限角,cos ,则sin 2等于()A B. C D.答案D解析由是第三象限角,且cos ,得sin ,所以sin 22sin cos 2,故选D.2已知sin ,则cos4sin4的值为()A B C. D.答案D解析cos4sin4(cos2sin2)(cos2sin2)cos 212sin21.3化简:等于()A1 B2 C. D1考点利用二倍角公式化简求值题点综合利用二倍角公式化简求值答案B解析2.故选B.4已知sin 2,则cos2等于()A. B. C. D.答案A解析因为cos2,所以cos2.故选A.5已知为锐角,且满足cos 2sin ,则等于(。

8、3.2二倍角的三角函数第1课时二倍角的三角函数基础过关1.已知sin 2,则cos2()A. B. C. D.解析cos2.答案C2.已知tan 22,22,则tan 的值为()A. B. C. D.解析由题意得2,解得tan 或tan .又22,则,所以有tan .答案C3.设sin 2sin ,则tan 2的值是_.解析sin 2sin ,cos ,又,tan 2tan tan .答案4.若sin(),则cos(2)的值为_.解析cos(2)cos(2)cos2()12sin2()2sin2()1.答案5.若1,则的值为_.解析1,tan 。

9、3.2二倍角的三角函数第1课时二倍角的三角函数学习目标1.会用两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用知识点二倍角公式1倍角公式sin 22sin cos .(S2)cos 2cos2sin212sin22cos21.(C2)tan 2.(T2)2二倍角公式的重要变形升幂公式1cos 22cos2,1cos 22sin2,1cos 2cos2,1cos 2sin2 .1sin 2sin cos .()2cos 4cos22sin22.()3对任意角,tan 2.()提示公式中所含各角应使三角函数有意义如及,上式均无意义.题型一给角求值例1求下列各式的值:(1)cos 72c。

10、第2课时二倍角的三角函数的应用一、选择题1化简的结果为()Atan Btan 2 C1 D2答案B解析原式tan 2.2若cos 2,则sin4cos4等于()A. B. C. D.答案C解析sin4cos4(sin2cos2)22sin2cos21sin221(1cos22)1.3设sin,则sin 2等于()A B. C. D答案A解析sin 2cos2sin2121.4已知tan ,则等于()A. B C D.答案D解析tan .5.等于()A2 B. C4 D.答案C解析原式4.二、填空题6若为第三象限角,则_.答案0解析为第三象限角,cos 0,sin 0, 。

11、第2课时二倍角的三角函数的应用基础过关1.函数f(x)2cos2xsin 2x的最小值是()A.1 B.1 C.1 D.2解析f(x)1cos 2xsin 2x1sin,f(x)的最小值为1.答案B2.设acos 6sin 6,b,c,则a,b,c的大小关系为()A.abc B.cabC.bca D.acb解析asin 30cos 6cos 30sin 6sin 24,bsin 26,csin 25,所以acb.答案D3.函数f(x)sin2 xsin xcos x1的最小正周期是_,最小值是_.解析f(x)sin2xsin xcos x1sin 2x1sin 2xcos 2xsin,所以T。

12、第2课时二倍角的三角函数的应用学习目标1.进一步熟练掌握二倍角公式的特征及正用、逆用.2.掌握二倍角公式的变形即降幂公式的特征.3.会用二倍角公式进行三角函数的一些简单的恒等变换知识点降幂公式1sin2.2cos2.3tan2.1若cos ,则sin .()2cos2.()题型一应用半角公式求值例1已知sin ,3,求cos和tan .考点利用简单的三角恒等变换化简求值题点利用半角公式化简求值解sin ,且3,cos .,cos .tan 2.反思感悟利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解(2)明范围:由于半。

【3.2二倍角的三角函数第2课】相关PPT文档
【3.2二倍角的三角函数第2课】相关DOC文档
标签 > 3.2二倍角的三角函数第2课时二倍角的三角函数的应用[编号:168192]