第3 讲,解直角三角形,第五章 图形与变换,2020年广东中考复习课件,1.利用相似的直角三角形,探索并认识锐角三角函数(sin A,,cos A,tan A),知道30,45,60角的三角函数值.,2.会使用计算器由已知锐角求它的三角函数值,由已知三,角函数值求它对应的锐角.,3.能用锐角三角函数
2020年四川省中考数学一轮复习课件第18讲 解直角三角形Tag内容描述:
1、第3 讲,解直角三角形,第五章 图形与变换,2020年广东中考复习课件,1.利用相似的直角三角形,探索并认识锐角三角函数(sin A,,cos A,tan A),知道30,45,60角的三角函数值.,2.会使用计算器由已知锐角求它的三角函数值,由已知三,角函数值求它对应的锐角.,3.能用锐角三角函数解直角三角形,能用相关知识解决一,些实际问题.,1.(2018年广西柳州)如图5-3-1,在 RtABC 中,C90,,BC4,AC3,则 sin B(,) 图 5-3-1,A.,3 5,B.,4 5,C.,3 7,D.,3 4,答案:A,答案:A,3.(2017 年湖北宜昌)ABC 在网格中的位置如图 5-3-2(每 个小正方形边长为 1),ADBC 。
2、第16讲 三角形与全等三角形,三角形中的重要线段,1.直线、射线、线段的区别,中点,DC,垂线段,BC,90,2,BC,三角形的性质,1.三角形的分类,2.三边关系 三角形的任意两边之和 ,两边之差 . 3.三角形的内角和定理及推论 (1)三角形的内角和等于180,外角和等于360. (2)直角三角形的两个锐角 . (3)三角形的一个外角 与它不相邻的两个内角的和. (4)三角形的一个外角 与它不相邻的任何一个内角.,大于第三边,小于第三边,互余,等于,大于,全等三角形,1.性质 (1)全等三角形的 、 分别相等; (2)全等三角形的对应线段(角平分线、高、中线、中位线) ,周长 ,面积。
3、第17讲 等腰三角形与直角三角形,等腰三角形,1.等腰三角形的概念 有 相等的三角形叫做等腰三角形; 都相等的三角形叫做等边三角形.,两边,三条边,2.等腰三角形的性质与判定,等边对等角,顶角平分线,底边上的高,三线合一,顶角平分线,相等,两角,等角对等边,3.等边三角形的性质与判定,60,轴,3,三条,角,60,等腰三角形,直角三角形的性质与判定,互余,平方和,平方,一半,一半,直角,互余,平方和,平方,两个重要互逆定理,1.角平分线:(1)性质:角平分线上的点到角两边的距离 . (2)判定:角的内部到角两边 的点在角的平分线上. 2.线段垂直平分线:(1)性质:线段。
4、第18讲解直角三角形(参考用时:45分钟)A层(基础)1.(2019广州)如图,有一斜坡AB,坡顶B离地面的高度BC为30 m,斜坡的倾斜角是BAC,若tanBAC=25,则此斜坡的水平距离AC为(A)(A)75 m (B)50 m (C)30 m (D)12 m解析:BCA=90,tanBAC=25,BC=30 m,tanBAC=25=BCAC=30AC,解得AC=75 m.故选A.2.在ABC中,若|sin A-32|+(1-tan B)2=0,则C的度数是(C)(A)45 (B)60 (C)75 (D)105解析:|sin A-32|+(1-tan B)2=0,sin A-32=0,1-tan B=0,sin A=32,tan B=1.A=60,B=45.C=180-60-45=75.故选C.3。
5、第18讲 解直角三角形,锐角三角函数,在RtABC中,C=90,设BC=a,CA=b,AB=c,锐角A的三角函数是A的正弦记作sin A= ;A的余弦记作cos A= ;A的正切记作tan A= ;它们统称为锐角A的三角函数.,特殊角的三角函数值,解直角三角形,1.定义:在直角三角形中,由已知元素,求出 的过程,叫做解直角三角形.解直角三角形时,已知的元素中应至少有一个是 . 2.解直角三角形的依据 RtABC中,C=90,设BC=a,CA=b,AB=c. (1)三边关系: . (2)两锐角关系: . (3)边角之间的关系: sin A= ;cos A= ;tan A= .,未知元素,边,a2+b2=c2,A+B=90,3.解直角三角形应用中的有关概念 (1)仰角和。