精准培优专练 2020届高三好教育精准培优专练 培优点七 文言文阅读(传记类) 一、培优典例分析 典例1. 阅读下面的文言文,完成下面小题。 裴子野,字几原,河东闻喜人。子野生而偏孤,为祖母所养,年九岁,祖母亡,泣血哀恸,家人异之。少好学,善属文。起家齐武陵王国左常侍,遭父忧去职。居丧尽礼,每之墓所
2020届高三精准培优专练四 恒成立问题文 学生版Tag内容描述:
1、精准培优专练2020届高三好教育精准培优专练培优点七 文言文阅读(传记类)一、培优典例分析典例1. 阅读下面的文言文,完成下面小题。裴子野,字几原,河东闻喜人。子野生而偏孤,为祖母所养,年九岁,祖母亡,泣血哀恸,家人异之。少好学,善属文。起家齐武陵王国左常侍,遭父忧去职。居丧尽礼,每之墓所,哭泣处草为之枯。天监初,尚书仆射范云嘉其行,将表奏之,会云卒,不果。久之,除右军安成王参军,俄迁兼廷尉。时三官通署狱牒,子野尝不在,同僚辄署其名,奏有不允,子野从坐免职。自此免黜久之,终无恨意。时中书范缜闻其行业而善。
2、精准培优专练2020届高三好教育精准培优专练培优点二 函数的零点一、求函数的零点例1:若幂函数的图象过点,则函数的零点是( )ABCD二、根据零点求解析式中的参数值例2:若函数与存在相同的零点,则的值为( )A或B或C或D或三、零点存在性定理应用例3:函数一定存在零点的区间是( )ABCD四、讨论含参数方程根的个数或函数零点的个数例4:函数在区间上零点的个数为( )ABCD五、根据函数零点的个数求参数范围例5:已知函数,若恰好有个零点,则的取值范围为( )ABCD六、根据函数零点的分布求参数范围例6:函数的一个零点在区间内,则实数。
3、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、简单的三角恒等变换例1:( )ABCD二、三角函数的图像例2:将函数的图像上各点向右平移个单位,再把每一点的横坐标缩短到原来的一半,纵坐标保持不变,所得函数图像的一条对称轴方程是( )ABCD三、三角函数的性质例3:若函数是偶函数,则( )ABCD四、三角函数的值域与最值例4:设函数(1)求函数的单调递增区间;(2)当时,的最小值为,求的值对点增分集训一、选择题1函数是( )A最小正周期为的奇函数B最小正周期为的偶函数C最小正周期为的奇函数D最小正周期为的偶函数。
4、精准培优专练2020届高三好教育精准培优专练培优点十一 人口问题一、人口增长与人口问题【培优指南】高考主要考查人口问题的判断、人口问题产生的原因、人口问题的影响及应对措施。具体分析如下:1人口问题的判断首先,明确主要的人口问题有人口增长过快、人口老龄化、人口性别比失调等。其次,在解题时要注意对材料或图中数据信息的提取。关于人口问题的判断,经常通过关于人口的新概念切入,比如人口红利等,分析时要注意对新概念的理解,注意新概念中各人口年龄段的关系,根据各人口年龄段数据的变化,尤其是少儿人口和老年人口的变化,。
5、精准培优专练2020届高三好教育精准培优专练培优点十七 影响类问题的突破一、常考“影响”归纳(一)影响类设问影响类设问常以区域图为信息载体,结合重大工程建设、产业活动、人口迁移、城市化等,就区域内典型地理现象或地理事物进行命题,常见设问形式有“带来的影响有哪些”“产生什么影响”“试分析对的影响”“分析说明对的有利影响或不利影响”等。影响类设问一般要从多角度分析,如有利影响和不利影响,对本地区(事物)的影响和对其他地区(事物)的影响,现在的影响和将来的可能影响,对社会、经济和生态的影响等。注意如果设问。
6、精准培优专练2020届高三好教育精准培优专练培优点十五 平行垂直的证明一、平行的证明例1:如图,在四棱锥中,底面是平行四边形,点在上,(1)证明:平面;(2)若是中点,点在上,平面,求线段的长二、垂直的证明例2:如图,在直三棱柱中,点是与的交点,点在线段上,平面(1)求证:;(2)求证:平面对点增分集训一、选择题1设,表示两个不同平面,表示一条直线,下列命题正确的是( )A若,则B若,则C若,则D若,则2如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是( )A与是异面直线B平面C,为异面直线。
7、精准培优专练2020届高三好教育精准培优专练培优点十八 圆锥曲线综合一、弦长问题例1:过双曲线的右焦点作倾斜角为的弦,求:(1)弦的中点到点的距离;(2)弦的长二、定值问题例2:设抛物线的焦点为,抛物线上的点到轴的距离等于(1)求抛物线的方程;(2)已知经过抛物线的焦点的直线与抛物线交于,两点,证明:为定值三、最值问题例3:已知两定点,为坐标原点,动点满足:直线,的斜率之积为(1)求动点的轨迹的方程;(2)设过点的直线与(1)中曲线交于,两点,求的面积的最大值四、存在性问题例4:已知中心在坐标原点的椭圆经过点,。
8、精准培优专练2020届高三好教育精准培优专练培优点十八 问题措施类问题的解决一、常见问题及措施(一)人口与城市化问题及解决措施问题表现解决措施人口问题发展中国家人口增长快,人口素质较低实行计划生育政策,控制人口增长;提高人口素质发达国家出现人口老龄化现象,人口增长缓慢,甚至呈负增长鼓励生育;接纳海外移民城市化问题环境问题:大气污染、水体污染、固体废弃物污染、噪声污染集中供热,合理布局有污染的企业,建立绿化隔离带;污水达标排放,建设污水处理厂;及时清理垃圾,实行分类回收利用;噪声大的工厂布局应远离城市。
9、精准培优专练2020届高三好教育精准培优专练培优点十四 区域如何定位一、宏观判南北半球的判断判断依据南北半球自转方向逆时针北半球顺时针南半球纬度变化纬度值北高南低(自转线速度北小南大)北半球纬度值南高北低(自转线速度北大南小)南半球温度等温线北低南高;1月(2月)气温低;7月(8月)气温高北半球等温线北高南低;1月(2月)气温高;7月(8月)气温低南半球阴阳坡山地北坡为阴坡,南坡为阳坡北半球山地北坡为阳坡,南坡为阴坡南半球中低纬大洋环流中低纬大洋环流呈顺时针流动北半球中低纬大洋环流呈逆时针流动南半球水平运动。
10、精准培优专练2020届高三好教育精准培优专练培优点十九 几何概型一、与长度有关的几何概型例1:某公司的班车在,发车,小明在至之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过分钟的概率是_例2:在区间上随机地取一个数,则事件“”发生的概率为_二、与面积有关的几何概型例3:在如图所示的扇形中,半圆切于点,与圆弧切于点,若随机向扇形内投一点,则该点落在半圆外的概率为( )ABCD例4:圆内有一内接正三角形,向圆内随机投一点,则该点落在正三角形内的概率为( )ABCD三、与体积有关的几何概型的求法例5:。
11、精准培优专练2020届高三好教育精准培优专练培优点九 线性规划一、求线性目标的最值例1:设变量,满足约束条件,则目标函数的最大值为 二、求非线性目标的最值例2:若满足约束条件,则的取值范围为( )ABCD三、线性规划的含参问题例3:已知,满足约束条件,若的最大值为,则( )ABCD四、线性规划的实际应用例4:某高科技企业生产产品和产品需要甲、乙两种新型材料生产一件产品需要甲材料,乙材料,用个工时;生产一件产品需要甲材料,乙材料,用个工时,生产一件产品的利润为元,生产一件产品的利润为元该企业现有甲材料,乙材料,则在不。
12、精准培优专练2020届高三好教育精准培优专练培优点四 水体运动一、水循环【培优指南】4个角度分析人类活动对水循环的影响人类主要通过影响水循环的环节来影响水循环,人类活动对水循环的影响既有有利的一面,又有不利的一面,分析如下:(1)从时间角度分析。主要是改变水资源的季节分配和年际变化,如修建水库和植树造林。(2)从空间角度分析。主要是改变水资源的空间分布,如跨流域调水。(3)从生态环境角度分析。大面积排干沼泽会导致生态环境恶化,所以应保护沼泽;过量抽取地下水,会导致地面下沉、海水倒灌;人类对植被的破坏,使。
13、精准培优专练2020届高三好教育精准培优专练培优点十三 环境问题一、环境问题【培优指南】1环境问题解答的基本方法2主要环境问题的防治措施主要问题具 体 措 施环境污染根本措施在于减少污染物排放(可通过提高利用率、废弃物经过净化处理后排放、使用环保原料和燃料等达到目的),同时加强绿化,以增强环境自净能力;对于全球性问题还需加强国际合作生态破坏治本在于恢复生态,因此首先要改变和停止不合理的人类活动,其次通过恢复植被、水域等增强环境的平衡、调节功能资源短缺要从“开源”(替代资源的开发、加强储量勘探等)和“节流”。
14、精准培优专练2020届高三好教育精准培优专练培优点十四 外接球一、构造正方体与长方体的外接球问题例1:已知直三棱柱的个顶点都在球的球面上,若,则球的半径为( )ABCD二、与正棱锥有关的外接球问题例2:一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )ABCD 三、其他柱体、锥体的外接球问题例3:已知是球的球面上的两点,为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为( )ABCD对点增分集训一、选择题1一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为,。
15、精准培优专练2020届高三好教育精准培优专练培优点十七 离心率一、直接求出,或求出与的比值求解例1:已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率为( )ABCD二、构造,的齐次式求解例2:已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )ABCD三、利用离心率的定义以及圆锥曲线的定义求解例3:已知,为双曲线的左、右焦点,点在上,且,则双曲线的离心率( )ABCD四、利用平面几何性质求解例4:设点为双曲线上一点,分别是左右焦点,是的内心,若,的面积,满足。
16、精准培优专练2020届高三好教育精准培优专练培优点十二 数列求和一、分组求和法例1:设公差不为的等差数列的前项和为,且,成等比数列(1)求数列的通项公式;(2)设,求数列的前项和二、裂项相消法例2:设数列的前项和为,且,(1)求数列的通项公式;(2)设,求数列的前项和三、错位相减法例3:在数列中,有,;在数列中,有前项和(1)求数列和的通项公式;(2)求数列的前项和对点增分集训一、选择题1已知各项不为的等差数列满足,则前项和( )ABCD2已知递增的等比数列的前项和为,若成等差数列,且,( )ABCD3设数列是首项为,公。
17、精准培优专练2020届高三好教育精准培优专练培优点十二 资源问题一、自然资源的综合开发与利用【培优指南】1矿物能源(煤、石油、天然气)的开发条件评价(1)资源开发条件评价的内容区域资源开发条件的评价,一般可从三个方面进行:资源储量和开采条件(资源丰富、埋藏浅或露天、地质条件好的地区易开采);市场条件(位于或靠近经济发达地区、市场需求量大的地区优先开采);交通运输条件(对外交通便利的地区优先开采)。(2)能源资源开发的分析思路能源资源的开发可从基础好、拉动强、有保证三方面分析。基础好拉动强有保证:有便利的。
18、精准培优专练2020届高三好教育精准培优专练培优点二十 框图一、程序框图求解方法例1:执行如图所示的程序框图,若输入的,则输出的的值是( )ABCD二、补全程序框图的方法例2:如图是计算的值的一个程序框图,在图中判断框内(1)处和执行框中的(2)处应填的语句是( )A,B,C,D,对点增分集训一、选择题1执行右边的程序框图,则输出的值为( )ABCD2依据小区管理条例,小区编制了如图所示的住户每月应缴纳卫生管理费的程序框图,并编写了相应的程序,已知小张家共有口人,则他家每个月应缴纳的卫生管理费(单位:元)是( )ABCD3如图。
19、精准培优专练2020届高三好教育精准培优专练培优点四 恒成立问题一、不等式恒成立问题例1:已知,不等式恒成立,则的取值范围为( )ABCD【答案】C【解析】把原不等式的左端看成关于的一次函数,记,则对于任意的恒成立,易知只需,且即可,联立解得或故选C例2:不等式对任意实数恒成立,则实数的取值范围为( )ABCD【答案】A【解析】由绝对值的几何意义易知的最小值为,所以不等式对任意实数恒成立,只需,解得故选A例3:已知,且,若恒成立,则实数的取值范围是( )ABCD【答案】D【解析】,二、函数恒成立问题例4:当时,指数函数恒成。
20、精准培优专练2020届高三好教育精准培优专练培优点四 恒成立问题一、最值分析法例1:设,当时,恒成立,求的取值范围 二、参变量分离法例2:已知函数,如果当时,不等式恒成立,求实数的取值范围 三、数形结合法例3:已知不等式在上恒成立,则实数的取值范围是 对点增分集训一、选择题1已知,若对任意的,恒成立,则实数的取值范围是( )ABCD2已知函数,当时,不等式恒成立,则实数的取值范围是( )ABCD3已知,不等式在上恒成立,则的取值范围是( )ABCD4若不等式对任意恒成立,则的取值范围是( )ABCD5已知函数,若在上恒成立,则的取。