2020江西省中考数学专题复习二次函数综合题含答案

题型十四第24题二次函数与几何图形综合题 注:二次函数与几何图形综合题每年24题必考,设问23问,分值10分,其中涉及二次函数图象平移变换4次,中心对称变换3次,轴对称变换1次 类型一二次函数与特殊三角形判定 (2016、2012.24) 【类型解读】二次函数与三角形判定近10年考查2次,涉及等腰三

2020江西省中考数学专题复习二次函数综合题含答案Tag内容描述:

1、题型十四第24题二次函数与几何图形综合题注:二次函数与几何图形综合题每年24题必考,设问23问,分值10分,其中涉及二次函数图象平移变换4次,中心对称变换3次,轴对称变换1次类型一二次函数与特殊三角形判定(2016、2012.24)【类型解读】二次函数与三角形判定近10年考查2次,涉及等腰三角形(1次)、等腰直角三角形(2次)的判定,均涉及求抛物线表达式,考查形式包含:已知抛物线表达式中的常数项和图象上两点坐标求表达式,判定抛物线与x轴的交点个数,求使等腰直角三角形成立的抛物线平移方式(2016);求使等腰直角三角形成立的抛物线表达式。

2、专题类型突破专题五 二次函数综合题类型一 线段、周长问题(2018宜宾中考改编)在平面直角坐标系 xOy 中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线 y x 与抛物线交于 A,B 两点,直14线 l 为 y1.(1)求抛物线的解析式;(2)在 y 轴上是否存在一点 M,使点 M 到点 A,B 的距离相等?若存在,求出点M 的坐标;若不存在,请说明理由;(3)在 l 上是否存在一点 P,使 PAPB 取得最小值?若存在,求出点 P 的坐标;若不存在,请说明理由;(4)设点 S 是直线 l 的一点,是否存在点 S,使的 SBSA 最大,若存在,求出点 S 的坐标【分析。

3、专题九二次函数综合题类型一 线段最值(含周长)问题命题角度代数型线段(周长)最值问题(2019重庆B卷改编)在平面直角坐标系中,抛物线yx22x3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.动点P是直线BC上方抛物线上一点,过点P作PEy轴交BC于E,作PFBC于F,设点P的横坐标为m,求当m为何值时,PEF的周长取得最大值,并求PEF周长的最大值【分析】先确定PF,PE,EF之间的数量关系,再用含m的代数式表示PEF的周长,进而利用二次函数最值性质求解【自主解答】1(2019烟台改编)如图,已知抛物线yx22x3与x轴交于A,B两点(点A在点B的左侧),与y轴。

4、专题五二次函数综合题类型一 与一次函数图象的交点问题(2019三明质检)已知抛物线C:y1a(xh)22,直线l:y2kxkh2(k0)(1)求证:直线l恒过抛物线C的顶点;(2)若a0,h1,当txt3时,二次函数y1a(xh)22的最小值为2,求t的取值范围;(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1k3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围【分析】(1)将抛物线顶点坐标代入直线l的解析式中即可求证;(2)由二次函数最小值为2可知,th1t3,解不等式即可得解;(3)使y1y2得点Q的横坐标为h,分类讨论a0和a0的两种情况即可。

5、二次函数综合题类型一 线段、周长最值问题1. 如图,在平面直角坐标系中,抛物线 yx 2x2 的图象与 x 轴相交于点 A、 B,与 y 轴交于点 C,过直线 BC 的下方抛物线上一动点 P 作PQAC 交线段 BC 于点 Q,再过点 P 作 PEx 轴于点 E,交 BC 于点 D.(1)求直线 AC 的解析式;(2)求PQD 周长的最大值及此时点 P 的坐标;(3)如图,当 PQD 的周长最大值时,在 y 轴上有两个动点 M、N(M在 N 的上方),连接 AM,PN,若 MN1,求 PNMNAM 的最小值第 1 题图解:(1)令 y0,即 x2x20,解得 x1 1,x 22,A(1,0),B(2 ,0),令 x0,则 y2,C(0,2) ,。

6、二次函数综合题 类型一 线段问题 1. (2020 丹东)如图,在平面直角坐标系中,抛物线 y1 2x 2bxc 与 x 轴交于 A,B 两点,A 点坐标 为(2,0),与 y 轴交于点 C(0,4),直线 y1 2xm 与抛物线交于 B,D 两点 (1)求抛物线的函数表达式; (2)求 m 的值和 D 点坐标; (3)点 P 是直线 BD 上方抛物线上的动点,过点 P 作 x 轴的垂线,垂足为 。

7、二次函数综合题(必考1道,9或12分)类型一与图形规律有关的探究问题(2019.23,2016.23,2014.24,2013.24)1. (2018江西样卷)已知抛物线Cn:ynx2(n1)x2n(其中n为正整数)与x轴交于An,Bn两点(点An在Bn的左边),与y轴交于点Dn.(1)填空:当n1时,点A1的坐标为_,点B1的坐标为_;当n2时,点A2的坐标为_,点B2的坐标为_;(2)猜想抛物线Cn是否经过某一个定点,若经过请写出该定点坐标并给予证明;若不经过,并说明理由;(3)判断A2D2B4的形状;猜想AnDnBn2的大小,并给予证明2. (2019南昌模拟)如图,抛物线C:yx2经过变换可得到抛物线C1:y1a1x(xb1。

标签 > 2020江西省中考数学专题复习二次函数综合题含答案[编号:150855]