2019云南省中考数学一轮复习第9讲一元一次不等式组课件

第8讲一元一次不等式(组) (参考用时:45分钟) A层(基础) 1.若xy,则下列式子错误的是(D) (A)x-3y-3(B)x3y3 (C)x+3y+3(D)-3x-3y 解析:不等式两边都减3,不等号的方向不变,A不符合题意; 不等式两边都除以一个正数,不等号的方向不变,B不符合题意. 不等式

2019云南省中考数学一轮复习第9讲一元一次不等式组课件Tag内容描述:

1、第8讲一元一次不等式(组)(参考用时:45分钟)A层(基础)1.若xy,则下列式子错误的是(D)(A)x-3y-3(B)x3y3(C)x+3y+3(D)-3x-3y解析:不等式两边都减3,不等号的方向不变,A不符合题意;不等式两边都除以一个正数,不等号的方向不变,B不符合题意.不等式两边都加3,不等号的方向不变,C不符合题意;不等式两边同乘以一个负数,不等号的方向改变,D符合题意.故选D.2.不等式3x-1x+3的解集是(D)(A)x4(B)x4(C)x2(D)x2解析:根据一元一次不等式的解法,移项,得3x-x3+1,合并同类项,得2x4,解得x2,故选D.3.(2019广元)不等式组3(x+1)x-1,x+722x-1的非负整数解的个数是(B)。

2、课题6 一元一次不等式(组)及其应用,基础知识梳理,中考题型突破,易混易错突破,河北考情探究,考点一 不等式的概念与基本性质,基础知识梳理,1.不等式的概念 用符号“”“0或ax+b0(a0)的形式.,2.解一元一次不等式的一般步骤 (1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.,。

3、第二章 方程与不等式,第一部分 基础过关,第5讲 一元一次不等式(组),3,考情通览,4,5,1不等式的有关概念 (1)不等式的概念及分类 用不等号(“” “” “” “”或“”)表示不等关系的式子叫做不等式 不等式常分两类:表示大小关系的不等式;表示不等关系的不等式,知识梳理,要点回顾,6,常见不等式的基本语言有: 若x是正数,则x0;若x是负数,则x0; 若x是非负数,则x0;若x是非正数,则x0; 若x大于y,则xy; 若x小于y,则xy; 若x不小于y,则xy;若x不大于y,则xy. (2)不等式的解集的概念 一个含有未知数的不等式的解的全体叫做不等式的解集 。

4、1.不等式 用 “”等表示不等关系的式子,叫做不等式. 2.不等式的解 能使不等式成立的 的值,叫做不等式的解. 3.不等式的解集 一个不等式的所有解,组成这个不等式的 叫做不等式的解集. 4.不等式组的解集 不等式组中几个不等式的解集的 就是不等式组的解集.,第8讲 一元一次不等式(组),不等式(组)的有关概念,不等号,未知数,解的集合,公共部分,不等式的性质,1.不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向 .如果ab,那么ac bc.,不变,正数,负数,一元一次不等式(组)及其解法(常考点),1.一元一次不等式 (1)定义:只含有一个未知数,。

5、第12讲 一元一次不等式组,一、一元一次不等式组的概念和解法 1. 一元一次不等式组的概念:关于同一个_的几个一元一次不等式合在一起,就组成一个一元一次不等式组 2. 一元一次不等式组的解集:不等式组中各个不等式的解集的_,就是这个一元一次不等式组的解集 3. 一元一次不等式组的解法 (1)求出每个_的解集; (2)确定这些解集的_,未知数,公共部分,一元一次不等式,公共部分,二、列一元一次不等式组解应用题 1基本步骤:审题,设未知数,列不等式组,解不等式组,按实际问题检验并写出答案 2关键步骤:从实际问题中探求两个不等量关系,列。

【2019云南省中考数学一轮复】相关PPT文档
【2019云南省中考数学一轮复】相关DOC文档
【2019云南省中考数学一轮复】相关其他文档
标签 > 2019云南省中考数学一轮复习第9讲一元一次不等式组课件[编号:151132]